Skip to main content
Log in

Active isotropic compliance in redundant manipulators

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The isotropic compliance property is examined in the Special Euclidean Group SE(3) in the case of redundant manipulators. The redundancy problem is solved by means of the QR decomposition of the transposed Jacobian matrix, and the compliance property is achieved by means of active stiffness regulation. Thanks to the defined control matrices, the control system realizes the isotropy condition. The local optimization of the joint torques is discussed. In particular, the joint control torques work is minimized obtaining an analytic solution through a Lyapunov equation. The proposed approach is applied to a 7R and to a 9R serial manipulator, and verified by means of multibody dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vinogradov, I.B., Kobrinski, A.E., Stepanenko, Y.E., Tives, L.T.: Details of kinematics of manipulators with the method of volumes. Mekhanika Mashin 1(5), 5–16 (1971)

    Google Scholar 

  2. Klein, C.A., Blaho, B.E.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72 (1987)

    Google Scholar 

  3. Kumar, A., Waldron, K.J.: The workspace of a mechanical manipulator. J. Mech. Des. 103, 665–672 (1981)

    Google Scholar 

  4. Park, F.C., Brockett, R.W.: Kinematic dexterity of robotic mechanisms. Int. J. Robot. Res. 13(1), 1–15 (1994)

    Google Scholar 

  5. Yang, D.C., Lai, Z.C.: On the conditioning of robotic manipulators - service angle. ASME J. Mech. Transm. Autom. Des. 107(5), 262–270 (1985)

    Google Scholar 

  6. Angeles, J., López-Cajún, C.S.: Kinematic isotropy and the conditioning index of serial robotic manipulators. Int. J. Robot. Res. 11(6), 560–571 (1992)

    Google Scholar 

  7. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    MathSciNet  Google Scholar 

  8. Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Google Scholar 

  9. Merlet, J.P.: Jacobian, manipulability, condition number, and accuracy of parallel robots. J. Mech. Des. 128(1), 199–206 (2006)

    Google Scholar 

  10. Bandyopadhyay, S., Ghosal, A.: An algebraic formulation of kinematic isotropy and design of isotropic 6–6 stewart platform manipulators. Mech. Mach. Theory 43(5), 591–616 (2008)

    MATH  Google Scholar 

  11. Legnani, G., Tosi, D., Fassi, I., Giberti, H., Cinquemani, S.: The point of isotropy and other properties of serial and parallel manipulators. Mech. Mach. Theory 45(10), 1407–1423 (2010)

    MATH  Google Scholar 

  12. Belfiore, N., Di Giamberardino, P., Rudas, I., Verotti, M.: Isotropy in any RR planar dyad under active joint stiffness regulation. Int. J. Mech. Control 12(1), 75–81 (2011)

    Google Scholar 

  13. Belfiore, N.P., Verotti, M., Di Giamberardino, P., Rudas, I.J.: Active joint stiffness regulation to achieve isotropic compliance in the Euclidean space. J. Mech. Robot. 4(4), 041010 (2012)

    Google Scholar 

  14. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, vol. 124. Springer, New York (2013)

    MATH  Google Scholar 

  15. Verotti, M., Belfiore, N.P.: Isotropic compliance in E(3): feasibility and workspace mapping. J. Mech. Robot. 8(6), 061005 (2016)

    Google Scholar 

  16. Verotti, M., Masarati, P., Morandini, M., Belfiore, N.: Isotropic compliance in the Special Euclidean Group SE(3). Mech. Mach. Theory 98, 263–281 (2016)

    Google Scholar 

  17. Calanca, A., Muradore, R., Fiorini, P.: A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans. Mechatron. 21(2), 613–624 (2016)

    Google Scholar 

  18. Firouzeh, A., Paik, J.: Grasp mode and compliance control of an underactuated origami gripper using adjustable stiffness joints. IEEE/ASME Trans. Mechatron. 22(5), 2165–2173 (2017)

    Google Scholar 

  19. Verotti, M., Dochshanov, A., Belfiore, N.: Compliance synthesis of CSFH MEMS-based microgrippers. J. Mech. Des., Trans. ASME 139(2), 022301 (2017)

    Google Scholar 

  20. Nasiri, R., Khoramshahi, M., Shushtari, M., Ahmadabadi, M.: Adaptation in variable parallel compliance: towards energy efficiency in cyclic tasks. IEEE/ASME Trans. Mechatron. 22(2), 1059–1070 (2017)

    Google Scholar 

  21. Lee, G., Park, S., Lee, D., Park, F., Jeong, J., Kim, J.: Minimizing energy consumption of parallel mechanisms via redundant actuation. IEEE/ASME Trans. Mechatron. 20(6), 2805–2812 (2015)

    Google Scholar 

  22. Colbaugh, R., Seraji, H., Glass, K.: Obstacle avoidance for redundant robots using configuration control. J. Field Robot. 6(6), 721–744 (1989)

    MATH  Google Scholar 

  23. Duguleana, M., Barbuceanu, F.G., Teirelbar, A., Mogan, G.: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot. Comput.-Integr. Manuf. 28(2), 132–146 (2012)

    Google Scholar 

  24. Menon, M.S., Ravi, V., Ghosal, A.: Trajectory planning and obstacle avoidance for hyper-redundant serial robots. J. Mech. Robot. 9(4), 041010 (2017)

    Google Scholar 

  25. Zhang, Z., Zheng, L., Yu, J., Li, Y., Yu, Z.: Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 22(3), 1423–1434 (2017)

    Google Scholar 

  26. Antonelli, G., Chiaverini, S., Fusco, G.: A new on-line algorithm for inverse kinematics of robot manipulators ensuring path tracking capability under joint limits. IEEE Trans. Robot. Autom. 19(1), 162–167 (2003)

    Google Scholar 

  27. Xiang, J., Zhong, C., Wei, W.: General-weighted least-norm control for redundant manipulators. IEEE Trans. Robot. 26(4), 660–669 (2010)

    Google Scholar 

  28. Flacco, F., De Luca, A., Khatib, O.: Control of redundant robots under hard joint constraints: saturation in the null space. IEEE Trans. Robot. 31(3), 637–654 (2015)

    Google Scholar 

  29. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)

    Google Scholar 

  30. Fang, J., Mei, T., Zhao, J., Li, T.: A dual-mode online optimization method for trajectory tracking of redundant manipulators. Ind. Robot: An International Journal 43(2), 241–252 (2016)

    Google Scholar 

  31. Vukobratovic, M., Kircanski, M.: A dynamic approach to nominal trajectory synthesis for redundant manipulators. IEEE Trans. Syst. Man Cybern. 4, 580–586 (1984)

    Google Scholar 

  32. Hirakawa, A.R., Kawamura, A.: Trajectory planning of redundant manipulators for minimum energy consumption without matrix inversion. In: Robotics and Automation, 1997. IEEE International Conference on Proceedings, vol. 3, pp. 2415–2420. IEEE, Albuquerque, NM, USA (1997)

    Google Scholar 

  33. Halevi, Y., Carpanzano, E., Montalbano, G.: Minimum energy control of redundant linear manipulators. J. Dyn. Syst. Meas. Control 136(5), 051016 (2014)

    Google Scholar 

  34. Hollerbach, J., Suh, K.: Redundancy resolution of manipulators through torque optimization. IEEE J. Robot. Autom. 3(4), 308–316 (1987)

    Google Scholar 

  35. Kang, H.J., Freeman, R.A.: Null space damping method for local joint torque optimization of redundant manipulators. J. Field Robot. 10(2), 249–270 (1993)

    MATH  Google Scholar 

  36. Chung, C., Lee, B.H., Kim, M., Lee, C.: Torque optimizing control with singularity-robustness for kinematically redundant robots. J. Intell. Robot. Syst. 28(3), 231–258 (2000)

    MATH  Google Scholar 

  37. Fang, J., Zhao, J., Mei, T., Chen, J.: Online optimization scheme with dual-mode controller for redundancy-resolution with torque constraints. Robot. Comput.-Integr. Manuf. 40, 44–54 (2016)

    Google Scholar 

  38. Shin, H., Lee, S., Jeong, J., Kim, J.: Antagonistic stiffness optimization of redundantly actuated parallel manipulators in a predefined workspace. IEEE/ASME Trans. Mechatron. 18(3), 1161–1169 (2013)

    Google Scholar 

  39. Nemec, B., Zlajpah, L.: Force control of redundant robots in unstructured environment. IEEE Trans. Ind. Electron. 49(1), 233–240 (2002)

    Google Scholar 

  40. Nenchev, D., Okawa, R., Sone, H.: Task-space dynamics and motion/force control of fixed-base manipulators under reaction null-space-based redundancy resolution. Robotica 34(12), 2860–2877 (2016)

    Google Scholar 

  41. Ajoudani, A., Tsagarakis, N., Bicchi, A.: Choosing poses for force and stiffness control. IEEE Trans. Robot. 33(6), 1483–1490 (2017)

    Google Scholar 

  42. Masarati, P.: Computed torque control of redundant manipulators using general-purpose software in real-time. Multibody Syst. Dyn. 32(4), 403–428 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Lin, Z., Patel, R.V., Balafoutis, C.A.: Impact reduction for redundant manipulators using augmented impedance control. J. Field Robot. 12(5), 301–313 (1995)

    MATH  Google Scholar 

  44. Kim, K.H., Park, I.J., Choi, J.H., Rhim, S.: Evaluation of head-collision safety of a 7-dof manipulator according to posture variation. Multibody Syst. Dyn. 37(1), 95–105 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Robot. Syst. 3(3), 201–212 (1990)

    Google Scholar 

  46. Zhang, Z., Chen, S., Li, S.: Compatible convex-nonconvex constrained qp-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Control Syst. Technol. 99, 1–9 (2018)

    Google Scholar 

  47. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)

    Google Scholar 

  48. Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)

    MATH  Google Scholar 

  49. Sciavicco, L., Siciliano, B.: A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE J. Robot. Autom. 4(4), 403–410 (1988)

    Google Scholar 

  50. Patel, R.V., Shadpey, F.: Control of Redundant Robot Manipulators: Theory and Experiments, vol. 316. Springer, Berlin (2005)

    MATH  Google Scholar 

  51. Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. Int. J. Robot. Res. 10(4), 410–425 (1991)

    Google Scholar 

  52. Wampler, C.: Inverse kinematic functions for redundant manipulators. In: 1987 IEEE International Conference on Robotics and Automation. Proceedings, vol. 4, pp. 610–617. IEEE, Raleigh, NC, USA (1987)

    Google Scholar 

  53. Zhang, Z., Fu, T., Yan, Z., Jin, L., Xiao, L., Sun, Y., Yu, Z., Li, Y.: A varying-parameter convergent-differential neural network for solving joint-angular-drift problems of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 23(2), 679–689 (2018)

    Google Scholar 

  54. Zhang, Z., Lin, Y., Li, S., Li, Y., Yu, Z., Luo, Y.: Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Technol. 26(4), 1345–1357 (2018)

    Google Scholar 

  55. Merlini, T., Morandini, M.: The helicoidal modeling in computational finite elasticity. Part I: variational formulation. Int. J. Solids Struct. 41(18–19), 5351–5381 (2004)

    MATH  Google Scholar 

  56. Golub, G.H., Van Loan, C.F.: Matrix Computations. forth JHU Press, Baltimore (2013)

    MATH  Google Scholar 

  57. Masarati, P., Morandini, M., Mantegazza, P.: An efficient formulation for general-purpose multibody/multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Verotti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 12
figure 12

Seven-DoF manipulator in the posture q a : end-effector displacements and rotations, with and without control action, for the simulation time from 3 s to 6 s (force applied in the \(y\)-axis direction)

Fig. 13
figure 13

Seven-DoF manipulator in the posture q a : end-effector displacements and rotations, with and without control action, for the simulation time from 6 s to 9 s (force applied in the \(z\)-axis direction)

Fig. 14
figure 14

Seven-DoF manipulator in the posture q a : end-effector displacements and rotations, with and without control action, for the simulation time from 9 s to 12 s (moment applied in the \(x\)-axis direction)

The first posture ( q a ) end-effector response, in the case of a force applied along the \(y\) direction with and without control action, is reported in Fig. 12. Analogously, the cases regarding the force on the \(z\) direction, the moment about the \(x\) direction, and the moment about the \(z\) direction are reported in Fig. 13, Fig. 14, and Fig. 15, respectively. The correspondent end-effector responses for the second case ( q b ) are reported in Fig. 16, Fig. 17, Fig. 18 and Fig. 19.

Fig. 15
figure 15

Seven-DoF manipulator in the posture q a : end-effector displacements and rotations, with and without control action, for the simulation time from 15 s to 18 s (moment applied in the \(z\)-axis direction)

Fig. 16
figure 16

Seven-DoF manipulator in the posture q b : end-effector displacements and rotations, with and without control action, for the simulation time from 3 s to 6 s (force applied in the \(y\)-axis direction)

Fig. 17
figure 17

Seven-DoF manipulator in the posture q b : end-effector displacements and rotations, with and without control action, for the simulation time from 6 s to 9 s (force applied in the \(z\)-axis direction)

Fig. 18
figure 18

Seven-DoF manipulator in the posture q b : end-effector displacements and rotations, with and without control action, for the simulation time from 9 s to 12 s (moment applied in the \(x\)-axis direction)

Fig. 19
figure 19

Seven-DoF manipulator in the posture q b : end-effector displacements and rotations, with and without control action, for the simulation time from 15 s to 18 s (moment applied in the \(z\)-axis direction)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verotti, M., Masarati, P., Morandini, M. et al. Active isotropic compliance in redundant manipulators. Multibody Syst Dyn 49, 421–445 (2020). https://doi.org/10.1007/s11044-020-09724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09724-2

Keywords

Navigation