Skip to main content
Log in

Motion Control of a Spatial Elastic Manipulator in the Presence of Measurement Noises

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a method for the end effector motion control of a spatial three-link robot having elastic second and third links including measurement noises. In the derivation of equations of motion, not to face with complex equations of motion, each link is modeled as though the links are not connected and the restrictions on the links due to connecting them by joints are written as constraint equations. After that the Lagrange multipliers are eliminated and the constraint equations at the acceleration level are substituted into the equations of motion to reduce the number of equations. To handle the non-minimum phase property, the equations of motion of the elastic manipulator are divided as the equations corresponding to a pseudostatic equilibrium and the equations of the deviations from them. Definition of the pseudostatic equilibrium used in this study can be given as a hypothetical state in which the end effector velocity and the end effector acceleration possess their reference values while the elastic deflections are instantly constant. The advantages of this control method are that the elastic deflections and the control inputs required for the pseudostatic equilibrium are obtained by an algebraic method and the feedback stabilization control inputs for the deviation equations are determined without linearizing the dynamic equations. The required measurements are obtained from the strain gauges on the links, the encoders placed on the joints and the position sensors attached to the end effector. For each sensor, a low pass filter is used. Simulations are made with low and high values of crossover frequencies to show the positive and negative effects of filtering on the responses of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mohamed, Z.; Martins, J.M.; Tokhi, M.O.; Sa da Costa, J.; Botto, M.A.: Vibration control of a very flexible manipulator system. Control Eng. Pract. 13, 267–277 (2005)

    Article  Google Scholar 

  2. Monje, C.A.; Ramos, F.; Feliu, V.; Vinagre, B.M.: Tip position control of a lightweight flexible manipulator using a fractional order controller. IET Control Theory Appl. 1(5), 1451–1460 (2007)

    Article  Google Scholar 

  3. El-Badawy, A.A.; Mehrez, M.W.; Ali, A.R.: Nonlinear modeling and control of flexible-link manipulators subjected to parametric excitation. Nonlinear Dyn. 62, 769–779 (2010)

    Article  Google Scholar 

  4. Becedas, J.; Payo, I.; Feliu, V.: Generalised proportional integral torque control for single-link flexible manipulators. IET Control Theory Appl. 4(5), 773–783 (2010)

    Article  MathSciNet  Google Scholar 

  5. Pereira, E.; Aphale, S.S.; Feliu, V.; Moheimani, S.O.R.: Integral resonant control for vibration damping and precise tip-positioning of a single-link flexible manipulator. IEEE/ASME Trans. Mechatron. 16(2), 232–240 (2011)

    Article  Google Scholar 

  6. Chalhoub, N.G.; Ulsoy, A.G.: Control of a flexible robot arm: experimental and theoretical results. ASME J. Dynam. Syst. Meas. Contr. 109, 299–309 (1987)

    Article  Google Scholar 

  7. Baruh, H.; Tadikonda, S.S.K.: Issues in the dynamics and control of flexible robot manipulators. J. Guid. Contr. Dynam. 12(5), 659–671 (1989)

    Article  MathSciNet  Google Scholar 

  8. Yang, H.; Yu, Y.; Yuan, Y.; Fan, X.: Back-stepping control of two-link flexible manipulator based on an extended state observer. Adv. Space Res. 56, 2312–2322 (2015)

    Article  Google Scholar 

  9. Ripamonti, F.; Orsini, L.; Resta, F.: A nonlinear sliding surface in sliding mode control to reduce vibrations of a three-link flexible manipulator. ASME J. Vib. Acoust. 139, 051005 (2017)

    Article  Google Scholar 

  10. Pfeiffer, F.: A feedforward decoupling concept for the control of elastic robots. J. Robot. Syst. 6(4), 407–416 (1989)

    Article  Google Scholar 

  11. Yim, W.: Inverse cartesian trajectory control and stabilization of a three axis flexible manipulator. J. Robot. Syst. 11(4), 311–326 (1994)

    Article  Google Scholar 

  12. Ider, S.K.; Ozgoren, M.K.; Ay, V.: Trajectory tracking control of robots with flexible links. Mech. Mach. Theory 37, 1377–1394 (2002)

    Article  MathSciNet  Google Scholar 

  13. Vandegrift, M.W.; Lewis, F.L.; Zhu, S.Q.: Flexible link robot arm control by a feedback linearization/singular perturbation approach. J. Robot. Syst. 11(7), 591–603 (1994)

    Article  Google Scholar 

  14. Subudhi, B.; Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41, 257–270 (2002)

    Article  Google Scholar 

  15. Konno, A.; Deman, L.; Uchiyama, M.: A singularly perturbed method for pole assignment control of a flexible manipulator. Robotica 20, 637–651 (2002)

    Article  Google Scholar 

  16. Yang, X.; Ge, S.S.; He, W.: Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int. J. Control 91(4), 969–988 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kilicaslan, S.; Ider, S.K.; Ozgoren, M.K.: Motion control of flexible-link manipulators. Proc. IMechE: Part C: J. Mech. Eng. Sci. 222, 2441–2453 (2008)

    Article  Google Scholar 

  18. Rosenbrock, H.H.: The stability of linear time-dependent control systems. J. Electron. Contr. 15, 73–80 (1963)

    Article  MathSciNet  Google Scholar 

  19. Desoer, C.A.: Slowly varying systems x=A(t)x. IEEE Trans. Autom. Contr. 14, 780–781 (1969)

    Article  MathSciNet  Google Scholar 

  20. Kilicaslan, S.: Unconstrained motion and constrained force and motion control of robots with flexible links. PhD dissertation, Dept. Mech. Eng., Middle East Technical Univ., Ankara, Turkey, (2005)

  21. Pisoni, A.C.; Santolini, C.; Hauf, D.; Dubowsky, S.: Displacements in a vibrating body by strain gauge measurements. In Proceedings of the 13th International Modal Analysis Conference, Nashville, TN (1995)

  22. Automation Consulting and Supply, Inc., Industrial Encoder Specifications. http://www.oddparts.com/ (1997)

  23. Doebelin, E.O.: Measurement Systems: Application and Design, 5th edn. McGraw-Hill Higher Education, New York (2004)

    Google Scholar 

  24. Cannon, R.; Schmitz, E.: Initial experiments on end-point control of a flexible one-link robot. Int. J. Robot. Res. 3(3), 62–75 (1984)

    Article  Google Scholar 

  25. Bayo, E.; Papadopoulos, P.; Stubbe, J.; Serna, M.A.: Inverse dynamics and kinematics of multilink elastic robots: an iterative frequency domain approach. Int. J. Robot. Res. 8(6), 49–62 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Kilicaslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilicaslan, S., Ider, S.K. & Ozgoren, M.K. Motion Control of a Spatial Elastic Manipulator in the Presence of Measurement Noises. Arab J Sci Eng 46, 12331–12354 (2021). https://doi.org/10.1007/s13369-021-05800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05800-7

Keywords

Navigation