Skip to main content
Log in

Generating 1-DOF limit cycle walking at target walking speed by feed-forward and feedback limit cycle control

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We propose the feed-forward and feedback (FaF) control systems for generating the limit cycle walking at a target walking speed by the combined rimless wheel (CRW) model. The proposed FaF control systems can calculate a control input constantly based on the mathematical analysis of the current and target walking states. As a result, first, the limit cycle walking at the target walking speed is generated by numerical simulations when the walker is driven by the constant FaF control system. Second, for controlling the convergence speed, we extend the FaF control to the two-period stepwise control systems. The limit cycle walking at the target walking speed is still generated, and the convergence speed is controlled by the settling time parameter. Finally, the real-time walking state updating is considered in the FaF control systems to handle the disturbances. In this case, we find that for generating a target walking speed, a precise mathematical model is not necessary for generating the target state, but can make the control input stable and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  2. Coleman, M.J., Chatterjee, A., Ruina, A.: Motions of a rimless spoked wheel: a simple three-dimensional system with impacts. Dyn. Stab. Syst. 12(3), 139–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coleman, M.J.: Dynamics and stability of a rimless spoked wheel: a simple 2D system with impacts. Dyn. Syst. 25(2), 215–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asano, F.: Stability analysis of underactuated compass gait based on linearization of motion. Multibody Syst. Dyn. 33(1), 93–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asano, F.: Fully analytical solution to discrete behavior of hybrid zero dynamics in limit cycle walking with constraint on impact posture. Multibody Syst. Dyn. 35(2), 191–213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hobbelen, D.G.E., Wisse, M.: A disturbance rejection measure for limit cycle walkers: the gait sensitivity norm. IEEE Trans. Robot. 23(6), 1213–1224 (2007)

    Article  Google Scholar 

  7. Hobbelen, D.G.E., Wisse, M.: Controlling the walking speed in limit cycle walking. Int. J. Robot. Res. 27(9), 989–1005 (2008)

    Article  Google Scholar 

  8. Xiao, X., Asano, F.: Analytical solution of steady step period in 1-DOF limit cycle walking driven by stepwise control inputs. In: Proc. of the IEEE Int. Conf. on Mechatronics and Automation (ICMA), pp. 245–250 (2014)

    Google Scholar 

  9. Kajita, S., Kanehiro, F., Kaneko, K., et al.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 239–246. IEEE Press, New York (2001)

    Google Scholar 

  10. Juang, J.G.: Fuzzy neural network approaches for robotic gait synthesis. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 30(4), 594–601 (2000)

    Article  Google Scholar 

  11. Asano, F.: Stability analysis of passive compass gait using linearized model. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 557–562 (2011)

    Google Scholar 

  12. Asano, F., Xiao, X.: Role of deceleration effect in efficient and fast convergent gait generation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 5649–5654 (2013)

    Google Scholar 

  13. Xiao, X., Asano, F.: Analytical solution of target steady walking speed in 1-DOF limit cycle walking. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 4525–4531 (2015)

    Google Scholar 

  14. Xiao, X., Asano, F.: Generating 1-DOF limit cycle walking at target walking speed by feedforward limit cycle control. In: IEEE 54th Annual Conference on Decision and Control (CDC), pp. 1316–1321. IEEE Press, New York (2015)

    Google Scholar 

  15. Jain, A., Kuo, C., Sinkarenko, I.: Feedforward dynamics for the control of articulated multi-limb robots. Multibody Syst. Dyn. 37(1), 49–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelly, M., Ruina, A.: Non-linear robust control for inverted-pendulum 2D walking. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4353–4358. IEEE Press, New York (2015)

    Google Scholar 

  17. Yi, S.J., Zhang, B.T., Hong, D., et al.: Practical bipedal walking control on uneven terrain using surface learning and push recovery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3963–3968. IEEE Press, New York (2011)

    Google Scholar 

  18. Hill, J., Fahimi, F.: Active disturbance rejection for walking bipedal robots using the acceleration of the upper limbs. Robotica 33(2), 264–281 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Asano, F. Generating 1-DOF limit cycle walking at target walking speed by feed-forward and feedback limit cycle control. Multibody Syst Dyn 40, 155–175 (2017). https://doi.org/10.1007/s11044-017-9568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9568-5

Keywords

Navigation