Skip to main content
Log in

Feedforward dynamics for the control of articulated multi-limb robots

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We describe a general approach for using linearizing feedforward control inputs for large degree of freedom (dof) multi-limb robots operating in scenarios involving motion and force constraints, and under-actuated degrees of freedom arising from the task and the environment. Our solution is general and has low computational cost needed for real-time control loops. It supports the tuning of the feedforward term to meet multiple task objectives. Being structure-based, it is able to easily accommodate changes in motion and force constraints that often occur in robotics scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The “∗” superscript denotes matrix transpose.

  2. For a matrix \(A\), the \(A^{*}\) notation denotes its matrix transpose.

  3. ©2016 California Institute of Technology. Government sponsorship acknowledged.

References

  1. Dynamics and Real-Time Simulation (DARTS) Lab (2014). http://dartslab.jpl.nasa.gov

  2. Craig, J.J.: Introduction to Robotics. Addison-Wesley, Pub. Co., Reading (1986)

    Google Scholar 

  3. Goswami, A.: Postural stability of biped robots and the foot rotation indicator (FRI) point. Int. J. Rehabil. Res. 18(6), 523–533 (1999)

    Article  MathSciNet  Google Scholar 

  4. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., Bergh, C., Borders, J., Frost, M., Hagman, M., Leichty, J., Backes, P., Kennedy, B., Karplus, P., Satzinger, B., Byl, K., Shankar, K., Burdick, J.: Mobile manipulation and mobility as manipulation-design and algorithms of RoboSimian. J. Field Robot. 32(2), 255–274 (2015). http://doi.wiley.com/10.1002/rob.21566. doi:10.1002/rob.21566

    Article  Google Scholar 

  5. Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer, Berlin (2011). doi:10.1007/978-1-4419-7267-5. http://www.springerlink.com/content/978-1-4419-7266-8/contents/

    Book  MATH  Google Scholar 

  6. Jain, A., Rodriguez, G.: An analysis of the kinematics and dynamics of underactuated manipulators. IEEE Trans. Robot. Autom. 9, 411–422 (1993). doi:10.1109/70.246052. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=246052

    Article  Google Scholar 

  7. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. RA–3(1), 43–53 (1987)

    Article  Google Scholar 

  8. Kuindersma, S., Deits, R., Andr, M.F., Dai, H., Permenter, F., Pat, K., Russ, M.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots (2015). http://dx.doi.org/10.1007/s10514-015-9479-3. doi:10.1007/s10514-015-9479-3

    Google Scholar 

  9. Luh, J.Y.S., Walker, M.W., Paul, R.P.: On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102(2), 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  10. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse dynamics control. Int. J. Robot. Res. 32(3), 280–298 (2013). http://ijr.sagepub.com/cgi/doi/10.1177/0278364912469821. doi:10.1177/0278364912469821

    Article  Google Scholar 

  11. Saab, L., Ramos, O.E., Mansard, N., Sou, P., Fourquet, Jy.: Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29(2), 346–362 (2013)

    Article  Google Scholar 

  12. Sentis, L., Petersen, J., Philippsen, R.: Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Auton. Robots 35(4), 301–319 (2013). doi:10.1007/s10514-013-9358-8

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration.Footnote 3 The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinandan Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Kuo, C. & Sinkarenko, I. Feedforward dynamics for the control of articulated multi-limb robots. Multibody Syst Dyn 37, 49–68 (2016). https://doi.org/10.1007/s11044-016-9511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9511-1

Keywords

Navigation