Skip to main content
Log in

A closed-form formula for the moment arm matrix of a general musculoskeletal model with considering joint constraint and motion rhythm

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces a new closed-form formulation for the moment arm matrix corresponding to the musculotendon unit in a general computational model of the musculoskeletal system. The novel approach uses matrix calculus to define a “Generalized Musculotendon Line of Action Vector (GMLAV)” in integration with the virtual work principle, hence leveraging both conventional geometry and tendon excursion methods. In contrast to previous methods, the concepts of motion rhythm and joint constraints have been incorporated without restrictions, where each joint variable is defined as an arbitrary smooth function of the generalized coordinate vector. The validity of our formulation was established by performing the simulations on two well-known musculoskeletal models from literature and comparing the outcomes with those obtained using OpenSim. The results presented in this paper show a high degree of fidelity between our novel simulation model and OpenSim (or SIMM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song, D., Lan, N., Loeb, G.E., Gordon, J.: Model-based sensorimotor integration for multi-joint control: development of a virtual arm model. Ann. Biomed. Eng. 36(6), 1033–1048 (2008). doi:10.1007/s10439-008-9461-8

    Article  Google Scholar 

  2. de Rugy, A., Riek, S., Oytam, Y., Carroll, T.J., Davoodi, R., Carson, R.G.: Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement. Exp. Brain Res. 189(4), 421–434 (2008). doi:10.1007/s00221-008-1437-2

    Article  Google Scholar 

  3. Tsianos, G.A., Goodner, J., Loeb, G.E.: Useful properties of spinal circuits for learning and performing planar reaches. J. Neural Eng. 11(5), 056006 (2014). doi:10.1088/1741-2560/11/5/056006

    Article  Google Scholar 

  4. Shao, Q., Bassett, D.N., Manal, K., Buchanan, T.S.: An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 39(12), 1083–1088 (2009). doi:10.1016/j.compbiomed.2009.09.002

    Article  Google Scholar 

  5. Yamaguchi, G.T., Zajac, F.E.: Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study. IEEE Trans. Biomed. Eng. 37(9), 886–902 (1990). doi:10.1109/10.58599

    Article  Google Scholar 

  6. Wang, C.Y., Bobrow, J.E., Reinkensmeyer, D.J.: Dynamic motion planning for the design of robotic gait rehabilitation. J. Biomech. Eng. 127(4), 672–679 (2005)

    Article  Google Scholar 

  7. Kia, M., Stylianou, A.P., Guess, T.M.: Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med. Eng. Phys. 36(3), 335–344 (2014). doi:10.1016/j.medengphy.2013.12.007

    Article  Google Scholar 

  8. Manal, K., Gravare-Silbernagel, K., Buchanan, T.S.: A Real-time EMG-driven Musculoskeletal Model of the Ankle. Multibody Syst. Dyn. 28(1–2), 169–180 (2012). doi:10.1007/s11044-011-9285-4

    Article  Google Scholar 

  9. Lo, J., Huang, G., Metaxas, D.: Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst. Dyn. 8(4), 433–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biral, F., Bertolazzi, E., Da Lio, M.: Real-time motion planning for multibody systems—Real life application examples. Multibody Syst. Dyn. 17(2–3), 119–139 (2007). doi:10.1007/s11044-007-9037-7

    MathSciNet  MATH  Google Scholar 

  11. Kim, J.H., Xiang, Y.J., Yang, J.Z., Arora, J.S., Abdel-Malek, K.: Dynamic motion planning of overarm throw for a biped human multibody system. Multibody Syst. Dyn. 24(1), 1–24 (2010). doi:10.1007/s11044-010-9193-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, J.H., Yang, J.Z., Abdel-Malek, K.: A novel formulation for determining joint constraint loads during optimal dynamic motion of redundant manipulators in DH representation. Multibody Syst. Dyn. 19(4), 427–451 (2008). doi:10.1007/s11044-007-9100-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Winters, J.M.: An improved muscle-reflex actuator for use in large-scale neuro-musculoskeletal models. Ann. Biomed. Eng. 23(4), 359–374 (1995)

    Article  Google Scholar 

  14. Winters, J.M., Stark, L.: Muscle models: what is gained and what is lost by varying model complexity. Biol. Cybern. 55(6), 403–420 (1987)

    Article  MathSciNet  Google Scholar 

  15. Blajer, W., Czaplicki, A., Dziewiecki, K., Mazur, Z.: Influence of selected modeling and computational issues on muscle force estimates. Multibody Syst. Dyn. 24(4), 473–492 (2010). doi:10.1007/s11044-010-9216-9

    Article  MATH  Google Scholar 

  16. Ackland, D.C., Lin, Y.C., Pandy, M.G.: Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J. Biomech. 45(8), 1463–1471 (2012). doi:10.1016/j.jbiomech.2012.02.023

    Article  Google Scholar 

  17. Nagano, A., Komura, T.: Longer moment arm results in smaller joint moment development, power and work outputs in fast motions. J. Biomech. 36(11), 1675–1681 (2003). doi:10.1016/S0021-9290(03)00171-4

    Article  Google Scholar 

  18. Schache, A.G., Ackland, D.C., Fok, L., Koulouris, G., Pandy, M.G.: Three-dimensional geometry of the human biceps femoris long head measured in vivo using magnetic resonance imaging. Clin. Biomech. (Bristol, Avon) 28(3), 278–284 (2013). doi:10.1016/j.clinbiomech.2012.12.010

    Article  Google Scholar 

  19. Dostal, W.F., Andrews, J.G.: A three-dimensional biomechanical model of hip musculature. J. Biomech. 14(11), 803–812 (1981)

    Article  Google Scholar 

  20. Maganaris, C.N.: Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur. J. Appl. Physiol. 91(2–3), 130–139 (2004). doi:10.1007/s00421-003-1033-x

    Article  Google Scholar 

  21. Manal, K., Cowder, J.D., Buchanan, T.S.: A hybrid method for computing achilles tendon moment arm using ultrasound and motion analysis. J. Appl. Biomech. 26(2), 224–228 (2010)

    Google Scholar 

  22. Arnold, A.S., Salinas, S., Asakawa, D.J., Delp, S.L.: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2), 108–119 (2000). doi:10.1002/1097-0150(2000)5:2<108::AID-IGS5>3.0.CO;2-2

    Article  Google Scholar 

  23. Ackland, D.C., Pandy, M.G.: Moment arms of the shoulder muscles during axial rotation. J. Orthop. Res. 29(5), 658–667 (2011). doi:10.1002/jor.21269

    Article  Google Scholar 

  24. Ackland, D.C., Pak, P., Richardson, M., Pandy, M.G.: Moment arms of the muscles crossing the anatomical shoulder. J. Anat. 213(4), 383–390 (2008). doi:10.1111/j.1469-7580.2008.00965.x

    Article  Google Scholar 

  25. An, K.N., Ueba, Y., Chao, E.Y., Cooney, W.P., Linscheid, R.L.: Tendon excursion and moment arm of index finger muscles. J. Biomech. 16(6), 419–425 (1983). doi:10.1016/0021-9290(83)90074-X

    Article  Google Scholar 

  26. Pandy, M.G.: Moment arm of a muscle force. Exerc. Sport Sci. Rev. 27, 79–118 (1999)

    Article  Google Scholar 

  27. Holzbaur, K.R., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005)

    Article  Google Scholar 

  28. Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)

    Article  Google Scholar 

  29. Garner, B.A., Pandy, M.G.: Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4(2), 93–126 (2001). doi:10.1080/10255840008908000

    Article  Google Scholar 

  30. Garner, B.A., Pandy, M.G.: The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models. Comput. Methods Biomech. Biomed. Eng. 3(1), 1–30 (2000). doi:10.1080/10255840008915251

    Article  Google Scholar 

  31. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990). doi:10.1109/10.102791

    Article  Google Scholar 

  32. Carvalho, A., Suleman, A.: Multibody simulation of the musculoskeletal system of the human hand. Multibody Syst. Dyn. 29(3), 271–288 (2013)

    Article  MathSciNet  Google Scholar 

  33. Hainisch, R., Gfoehler, M., Zubayer-Ul-Karim, M., Pandy, M.G.: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody Syst. Dyn. 28(1–2), 143–156 (2012)

    Article  Google Scholar 

  34. Quental, C., Folgado, J., Ambrósio, J., Monteiro, J.: A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst. Dyn. 28(1–2), 83–108 (2012)

    Article  MathSciNet  Google Scholar 

  35. de Groot, J.H.: The variability of shoulder motions recorded by means of palpation. Clin. Biomech. (Bristol, Avon) 12(7–8), 461–472 (1997). doi:10.1016/S0268-0033(97)00031-4

    Article  Google Scholar 

  36. de Groot, J.H., Brand, R.: A three-dimensional regression model of the shoulder rhythm. Clin. Biomech. (Bristol, Avon) 16(9), 735–743 (2001). doi:10.1016/S0268-0033(01)00065-1

    Article  Google Scholar 

  37. Moissenet, F., Chèze, L., Dumas, R.: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Syst. Dyn. 28(1–2), 125–141 (2012)

    Article  MathSciNet  Google Scholar 

  38. Grewal, T.J., Dickerson, C.R.: A novel three-dimensional shoulder rhythm definition that includes overhead and axially rotated humeral postures. J. Biomech. 46(3), 608–611 (2013). doi:10.1016/j.jbiomech.2012.09.028

    Article  Google Scholar 

  39. Xu, X., Lin, J.H., McGorry, R.W.: A regression-based 3-D shoulder rhythm. J. Biomech. 47(5), 1206–1210 (2014). doi:10.1016/j.jbiomech.2014.01.043

    Article  Google Scholar 

  40. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007). doi:10.1109/TBME.2007.901024

    Article  Google Scholar 

  41. De Sapio, V., Holzbaur, K., Khatib, O.: The control of kinematically constrained shoulder complexes: physiological and humanoid examples. In: Robotics and Automation, 15–19 May 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 2952–2959 (2006)

    Google Scholar 

  42. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2008)

    Book  MATH  Google Scholar 

  43. Brewer, J.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978). doi:10.1109/tcs.1978.1084534

    Article  MathSciNet  MATH  Google Scholar 

  44. Vetter, W.J.: Matrix calculus operations and Taylor expansions. SIAM Rev. 15(2), 352–369 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  46. Delp, S.L.: Surgery simulation: A computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Ph.D. dissertation, Stanford University (1990)

  47. Holzbaur, K.R.S.: Upper limb biomechanics: Musculoskeletal modeling, surgical simulation, and scaling of muscle size and strength. Ph.D. dissertation, Stanford University (2005)

Download references

Acknowledgements

We gratefully acknowledge Dr. Kinda Khalaf for her help in reviewing the manuscript. Thanks are also due to Dr. Bahman Nasseroleslami, Professor Richard Hughes and the anonymous referees for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Rostami.

Appendices

Appendix A

In this study, by employing the derivative of a matrix with respect to vectors, we managed to derive a closed-form formula for the moment arm matrix of a general musculoskeletal system in the presence of joint constraints and motion rhythm. However, as emphasized in the previous sections, the definition of matrix derivative used is different from that used by other studies such as Brewer [43] and Vetter [44]. In this appendix, we first introduce our definition for the derivative of a matrix with respect to a vector; and then, we have expatiated on this definition by stating and proving its properties.

Although the matrix calculus we use is different from the aforementioned studies, we have borrowed the definition of an elementary matrix from Brewer’s work [43]: \(\mathcal{E}_{ik}^{m \times n}\) is a matrix which belongs to \(\mathbb{R}^{m \times n}\) and is zero everywhere except at its \(i\)\(k\) element that is “1”. Using this matrix an arbitrary matrix like \(\mathbf{A} \in \mathbb{R}^{m \times n}\), can be written as

$$ \mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} A_{ik} \mathcal{E}_{ik}^{m \times n} $$
(A.1)

where \(A_{ik}\) is an element of \(\mathbf{A}\) located at its \(i\)th row and \(k\)th column.

We define the derivative of matrix \(\mathbf{A}\) with respect to an arbitrary vector \(\mathbf{q} \in \mathbb{R}^{r}\) as follows:

$$ \frac{\partial \mathbf{A}}{\partial \mathbf{q}} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \otimes \frac{\partial A_{ik}}{\partial \mathbf{q}}. $$
(A.2)

The following includes the various properties of the defined matrix calculus and associated proofs:

Property 1

$$\frac{\partial ( \mathbf{AB} )}{\partial \mathbf{q}} = \frac{\partial \mathbf{A}}{\partial \mathbf{q}}\mathbf{B} + ( \mathbf{A} \otimes \mathbf{I}_{r} )\frac{\partial \mathbf{B}}{\partial \mathbf{q}},\quad \mbox{where}\ \mathbf{B} \in \mathbb{R}^{m \times t}. $$

Proof

According to the definition of matrix multiplication, one can deduce

$$\frac{\partial ( \mathbf{AB} )}{\partial \mathbf{q}} = \sum_{i = 1}^{m} \sum _{k = 1}^{t} \mathcal{E}_{ik}^{m \times t} \otimes \sum_{j = 1}^{n} \biggl( \frac{\partial A_{ij}}{\partial \mathbf{q}}B_{jk} + A_{ij}\frac{\partial B_{jk}}{\partial \mathbf{q}} \biggr); $$

hence,

$$ \frac{\partial ( \mathbf{AB} )}{\partial \mathbf{q}} = \sum_{i = 1}^{m} \sum _{k = 1}^{t} \sum _{j = 1}^{n} \bigl( B_{jk} \mathcal{E}_{ik}^{m \times t} \bigr) \otimes \frac{\partial A_{ij}}{\partial \mathbf{q}} + \sum_{i = 1}^{m} \sum _{k = 1}^{t} \sum_{j = 1}^{n} \bigl( A_{ij}\mathcal{E}_{ik}^{m \times t} \bigr) \otimes \frac{\partial B_{jk}}{\partial \mathbf{q}}. $$
(A.3)

Since (see Table 1 of Brewer [43])

$$B_{jk}\mathcal{E}_{ik}^{m \times t} = \mathcal{E}_{ij}^{m \times n} \mathbf{B} \mathcal{E}_{kk}^{t \times t} $$

and

$$A_{ij}\mathcal{E}_{ik}^{m \times t} = \mathcal{E}_{ii}^{m \times m} \mathbf{A} \mathcal{E}_{jk}^{n \times t}, $$

Eq. (A.3) transforms as follows:

$$ \begin{aligned}[b] \frac{\partial ( \mathbf{AB} )}{\partial \mathbf{q}} &= \sum_{i = 1}^{m} \sum_{k = 1}^{t} \sum _{j = 1}^{n} \bigl( \mathcal{E}_{ij}^{m \times n} \mathbf{B} \mathcal{E}_{kk}^{t \times t} \bigr) \otimes \frac{\partial A_{ij}}{\partial \mathbf{q}} \\ &\quad + \sum_{i = 1}^{m} \sum _{k = 1}^{t} \sum_{j = 1}^{n} \bigl( \mathcal{E}_{ii}^{m \times m} \mathbf{A} \mathcal{E}_{jk}^{n \times t} \bigr) \otimes \frac{\partial B_{jk}}{\partial \mathbf{q}} \end{aligned}. $$
(A.4)

Applying the mixed-product property of the Kronecker multiplication on Eq. (A.4) yields

$$\begin{aligned} \frac{\partial ( \mathbf{AB} )}{\partial \mathbf{q}} &= \sum_{i = 1}^{m} \sum _{j = 1}^{n} \biggl( \mathcal{E}_{ij}^{m \times n} \otimes \frac{\partial A_{ij}}{\partial \mathbf{q}} \biggr) \Biggl( \mathbf{B}\sum _{k = 1}^{t} \mathcal{E}_{kk}^{t \times t} \otimes 1 \Biggr) \\ &\quad + \Biggl( \Biggl( \sum_{i = 1}^{m} \mathcal{E}_{ii}^{m \times m}\mathbf{A} \Biggr) \otimes \mathbf{I}_{r} \Biggr)\sum_{k = 1}^{t} \sum_{j = 1}^{n} \biggl( \mathcal{E}_{jk}^{n \times t} \otimes \frac{\partial B_{jk}}{\partial \mathbf{q}} \biggr). \end{aligned}$$

Since \(\mathbf{I}_{m} = \sum_{i = 1}^{m} \mathcal{E}_{ii}^{m \times m}\) and \(\mathbf{I}_{t} = \sum_{k = 1}^{t} \mathcal{E}_{kk}^{t \times t}\), the first property has been proven. □

Property 2

$$\begin{aligned} \frac{\partial ( a\mathbf{A} )}{\partial \mathbf{q}} = \mathbf{A} \otimes \frac{\partial a}{\partial \mathbf{q}} + a\frac{\partial \mathbf{A}}{\partial \mathbf{q}}\quad \mbox{where $a$ is a scalar real-valued function}. \end{aligned}$$

Proof

According to (A.2), we have

$$\begin{aligned} \frac{\partial ( a\mathbf{A} )}{\partial \mathbf{q}} &= \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \otimes \frac{\partial ( aA_{ik} )}{\partial \mathbf{q}} \\ &= \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \otimes \biggl( \frac{\partial a}{\partial \mathbf{q}}A_{ik} + a\frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr); \end{aligned}$$

therefore,

$$\frac{\partial ( a\mathbf{A} )}{\partial \mathbf{q}} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \bigl( \mathcal{E}_{ik}^{m \times n}A_{ik} \bigr) \otimes \frac{\partial a}{\partial \mathbf{q}} + a\sum_{i = 1}^{m} \mathcal{E}_{ik}^{m \times n} \otimes \frac{\partial A_{ik}}{\partial \mathbf{q}}. $$

In order to obtain this relation, we have used the mixed-product property of the Kronecker multiplication. □

Property 3

$$\begin{aligned} &\mbox{(a)}\quad d\mathbf{A} = \bigl( \mathbf{I}_{m} \otimes d \mathbf{q}^{T} \bigr)\frac{\partial \mathbf{A}}{\partial \mathbf{q}}; \\ &\mbox{(b)}\quad d\mathbf{A} = \biggl( \frac{\partial \mathbf{A}^{T}}{\partial \mathbf{q}} \biggr)^{T} ( \mathbf{I}_{n} \otimes d\mathbf{q} ). \end{aligned}$$

Proof

(a) Using Eq. (A.1), we have

$$ d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} dA_{ik}; $$
(A.5)

moreover,

$$dA_{ik} = \sum_{j = 1}^{r} \frac{\partial A_{ik}}{\partial q_{j}} dq_{j} = d\mathbf{q}^{T}\frac{\partial A_{ik}}{\partial \mathbf{q}}. $$

Substituting this relation into Eq. (A.5) results in

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \biggl( d\mathbf{q}^{T}\frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr). $$

Since \(d\mathbf{q}^{T}\frac{\partial A_{ik}}{\partial \mathbf{q}}\) is a scalar, one may rewrite the aforementioned equation into what follows:

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \otimes \biggl( d\mathbf{q}^{T}\frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr). $$

Utilizing the mixed-product property, this relation is rearranged into the following structure:

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \bigl( \mathbf{I}_{m} \otimes d\mathbf{q}^{T} \bigr) \biggl( \mathcal{E}_{ik}^{m \times n} \otimes \frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr); $$

therefore,

$$d\mathbf{A} = \bigl( \mathbf{I}_{m} \otimes d\mathbf{q}^{T} \bigr)\frac{\partial \mathbf{A}}{\partial \mathbf{q}}. $$

(b) The main process of proving this claim is similar to that of part (a). However, for computing \(dA_{ik}\) we write

$$dA_{ik} = \biggl( \frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr)^{T}d \mathbf{q}; $$

therefore,

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \mathcal{E}_{ik}^{m \times n} \otimes \biggl( \biggl( \frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr)^{T}d\mathbf{q} \biggr). $$

Employing the same plan as we did in part (a), we obtain the following result:

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \biggl( \mathcal{E}_{ik}^{m \times n} \otimes \biggl( \frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr)^{T} \biggr) ( \mathbf{I}_{n} \otimes d\mathbf{q} ). $$

Moreover, since \(( \mathcal{E}_{ik}^{m \times n} )^{T} = \mathcal{E}_{ki}^{n \times m}\), one may reformulate this equation into the following one:

$$d\mathbf{A} = \sum_{i = 1}^{m} \sum _{k = 1}^{n} \biggl( \mathcal{E}_{ki}^{n \times m} \otimes \frac{\partial A_{ik}}{\partial \mathbf{q}} \biggr)^{T} ( \mathbf{I}_{n} \otimes d\mathbf{q} ); $$

hence,

$$d\mathbf{A} = \biggl( \frac{\partial \mathbf{A}^{T}}{\partial \mathbf{q}} \biggr)^{T} ( \mathbf{I}_{n} \otimes d\mathbf{q} ). $$

Using this property, one can easily extract similar formulae for \(\frac{d\mathbf{A}}{dt}\) and \(\delta \mathbf{A}\). □

Appendix B

The purpose of this section is to substantiate the following equality:

$$ \bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \delta \mathbf{q}^{T} \bigl( \bar{ \mathbf{0}}^{ T} \otimes \mathbf{I}_{n_{q}} \bigr) \mathbf{D}_{i} $$
(B.1)

where \(\mathbf{D}_{i} \in \mathbb{R}^{4n_{q} \times 4}\) which in Sect. 2.3.1 has been defined as

$$\mathbf{D}_{i} = \biggl( \frac{\partial \mathbf{B}_{i}}{\partial \mathbf{q}} \biggr){}_{i}^{0} \bar{\mathbf{A}}_{4}. $$

Starting from the left-hand side of Eq. (B.1), we have

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{I}_{4n_{q}} \mathbf{D}_{i}. $$

Since \(\mathbf{I}_{4n_{q}} = \mathbf{I}_{n_{q}} \otimes \mathbf{I}_{4}\), one may rewrite the right-hand side of this equation into the following form:

( 0 ¯ T δ q T ) D i = ( 0 ¯ T δ q T ) ( { [ I 3 0 3 × 1 0 3 × 1 T 0 ] + [ 0 3 0 3 × 1 0 3 × 1 T 1 ] } I n q ) D i .

Expanding the right-hand side of this equation results in

( 0 ¯ T δ q T ) D i = ( 0 ¯ T δ q T ) ( [ I 3 0 3 × 1 0 3 × 1 T 0 ] I n q ) D i + ( 0 ¯ T δ q T ) ( [ 0 3 0 3 × 1 0 3 × 1 T 1 ] I n q ) D i .

Now we prove that the first part on the right-hand side of this relation vanishes. To this end, we use the mixed-product property of the Kronecker multiplication:

( 0 ¯ T δ q T ) ( [ I 3 0 3 × 1 0 3 × 1 T 0 ] I n q ) D i = ( 0 ¯ T [ I 3 0 3 × 1 0 3 × 1 T 0 ] δ q T I n q ) D i = ( 0 1 × 4 δ q T ) D i = 0 1 × 4 ;

hence,

( 0 ¯ T δ q T ) D i = ( 0 ¯ T δ q T ) ( [ 0 3 0 3 × 1 0 3 × 1 T 1 ] I n q ) D i .

Since

[ 0 3 0 3 × 1 0 3 × 1 T 1 ] = 0 ¯ T 0 ¯ ,

we can rewrite this equation into the following one:

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr) \bigl( \bigl( \bar{\mathbf{0}}^{ T} \otimes \bar{\mathbf{0}} \bigr) \otimes \mathbf{I}_{n_{q}} \bigr) \mathbf{D}_{i}. $$

Employing the distributive property of the Kronecker multiplication, we have

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr) ( \bar{\mathbf{0}} \otimes \mathbf{C} ) \mathbf{D}_{i} $$

where \(\mathbf{C} = \bar{\mathbf{0}}^{ T} \otimes \mathbf{I}_{n_{q}}\).

Since \(\mathbf{D}_{i} = 1 \otimes \mathbf{D}_{i}\),

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr) ( \bar{\mathbf{0}} \otimes \mathbf{CD}_{i} ). $$

Taking the mixed-product property of the Kronecker multiplication into consideration results in

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \bar{\mathbf{0}}^{ T}\bar{\mathbf{0}} \otimes \delta \mathbf{q}^{T}\mathbf{CD}_{i}. $$

Since \(\bar{\mathbf{0}}^{ T}\bar{\mathbf{0}} = 1\), we come into the following conclusion:

$$\bigl( \bar{\mathbf{0}}^{ T} \otimes \delta \mathbf{q}^{T} \bigr)\mathbf{D}_{i} = \delta \mathbf{q}^{T} \bigl( \bar{ \mathbf{0}}^{ T} \otimes \mathbf{I}_{n_{q}} \bigr) \mathbf{D}_{i}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsani, H., Rostami, M. & Parnianpour, M. A closed-form formula for the moment arm matrix of a general musculoskeletal model with considering joint constraint and motion rhythm. Multibody Syst Dyn 36, 377–403 (2016). https://doi.org/10.1007/s11044-015-9469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9469-4

Keywords

Navigation