Skip to main content
Log in

Model-Based Sensorimotor Integration for Multi-Joint Control: Development of a Virtual Arm Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual MuscleTM (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (γstat) and dynamic (γdyn) controls and outputs of primary (Ia) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (Ib) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of α and γ drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abend W., Bizzi E., Morasso P. 1982 Human arm trajectory formation. Brain 105: 331–348

    Article  PubMed  CAS  Google Scholar 

  2. Alstermark, B., N. Lan, and L.-G. Pettersson. Building a realistic neuronal model that simulates multi-joint arm and hand movements in 3D-space. HFSP Journal 1(4):209–214, 2007

    Article  PubMed  Google Scholar 

  3. Blemker S. S., Delp S. L. 2005 Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33: 661–673

    Article  PubMed  Google Scholar 

  4. Brown I. E., Cheng E. J., Loeb G. E. 1999 Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force–length and force–velocity relationships. J. Muscle Res. Cell Motil. 20: 627–643

    Article  PubMed  CAS  Google Scholar 

  5. Brown I. E., Loeb G. E. 1999 Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production. J. Muscle Res. Cell Motil. 20: 443–456

    Article  PubMed  CAS  Google Scholar 

  6. Brown I. E., Loeb G. E. 2000 Measured and modeled properties of mammalian skeletal muscle: III. The effects of stimulus frequency on stretch-induced force enhancement and shortening-induced force depression. J. Muscle Res. Cell Motil. 21: 21–31

    Article  PubMed  CAS  Google Scholar 

  7. Brown I. E., Loeb G. E. 2000 Measured and modeled properties of mammalian skeletal muscle: IV. Dynamics of activation and deactivation. J. Muscle Res. Cell Motil. 21: 33–47

    Article  PubMed  CAS  Google Scholar 

  8. Burdet E., Osu R., Franklin D. W., Milner T. E., Kawato M. 2001 The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414: 446–449

    Article  PubMed  CAS  Google Scholar 

  9. Capaday C., Cooke J. D. 1983 Vibration-induced changes in movement-related EMG activity in humans. Exp. Brain Res. 52: 139–146

    Article  PubMed  CAS  Google Scholar 

  10. Cheng E. J., Brown I. E., Loeb G. E. 2000 Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J. Neurosci. Methods 101: 117–130

    Article  PubMed  CAS  Google Scholar 

  11. Cordo P. J., Flores-Vieira C., Verschueren S. M. P., Inglis J. T., Gurfinkel V. 2002 Position sensitivity of human muscle spindles: single afferent and population representations. J. Neurophysiol. 87: 1186–1195

    PubMed  Google Scholar 

  12. Cordo P., Gandevia S. C., Hales J. P., Burke D., Laird G. 1993 Force and displacement-controlled tendon vibration in humans. Electroen. Clin. Neurophysiol. 89: 45–53

    Article  CAS  Google Scholar 

  13. Crago P. E., Houk J. C., Rymer W. Z. 1982 Sampling of total muscle force by tendon organs. J. Neurophysiol. (Bethesda) 47: 1069–1083

    CAS  Google Scholar 

  14. Davoodi, R., I. E. Brown, N. Lan, M. Mileusnic, and G. E. Loeb. An integrated package of neuromusculo-skeletal modeling tools in SimulinkTM. In: 23rd IEEE/EMBS Ann Int’l Conf 2001

  15. Delp S. L., Loan J. P. 1995 A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25: 21–34

    Article  PubMed  CAS  Google Scholar 

  16. Flash T. 1987 The control of hand equilibrium trajectories in multijoint arm movements. Biol. Cybern. 57: 257–274

    Article  PubMed  CAS  Google Scholar 

  17. Garner B. A., Pandy M. G. 2001 Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4: 93–126

    Article  CAS  Google Scholar 

  18. Garner B. A., Pandy M. G. 2003 Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31: 207–220

    Article  PubMed  Google Scholar 

  19. Ghez C., Gordon J., Ghilardi M. F., Christakos C. N., Cooper S. E. 1990 Roles of proprioceptive input in the programming of arm trajectories. Cold Spring Harb. Symp. Quant. Biol. 55: 837–847

    PubMed  CAS  Google Scholar 

  20. Gonzalez R. V., Hutchins E. L., Barr R. E., Abraham L. D. 1996 Development and evaluation of a musculoskeletal model of the elbow joint complex. J. Biomech. Eng. Trans. ASME 118: 32–40

    Article  CAS  Google Scholar 

  21. Gordon J., Ghilardi M. F., Ghez C. 1995 Impairments of reaching movements in patients without proprioception. 1. Spatial Errors J. Neurophysiol. 73, 347–360

    PubMed  CAS  Google Scholar 

  22. Haugstvedt J. R., Berger R. A., Berglund L. J. 2001 A mechanical study of the moment-forces of the supinators and pronators of the forearm. Acta Orthop. Scand. 72: 629–634

    Article  PubMed  CAS  Google Scholar 

  23. Hogan N. 1985 The mechanics of multi-joint posture and movement control. Biol. Cybern. 52: 315–332

    Article  PubMed  CAS  Google Scholar 

  24. Holzbaur K. R. S., Murray W. M., Delp S. L. 2005 A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33: 829–840

    Article  PubMed  Google Scholar 

  25. Johnson M. A., Polgar J., Weightman D., Appleton D. 1973 Data on the distribution of fibre types in 36 human muscles, an autopsy study. J. Neurol. Sci. 18: 111–129

    Article  PubMed  CAS  Google Scholar 

  26. Kuechle D. K., Newman S. R., Itoi E., Morrey B. F., An K. N. 1997 Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elb. Surg. 6: 429–439

    Article  CAS  Google Scholar 

  27. Lan N. 1997 Analysis of an optimal control model of multi-joint arm movements. Biol. Cybern. 76: 107–117

    Article  PubMed  CAS  Google Scholar 

  28. Lan, N., and L. Baker. Biomechanical couplings between elbow and forearm movements. In: Proc. 26th IEEE/EMBS Ann. Intl. Conf., San Francisco, CA, Sept. 2004

  29. Lan N., Crago P. E. 1994 Optimal-control of antagonistic muscle-stiffness during voluntary movements. Biol. Cybern. 71: 123–135

    Article  PubMed  CAS  Google Scholar 

  30. Lan N., Li Y., Sun Y., Yang F. S. 2005 Reflex regulation of antagonist muscles for control of joint equilibrium position. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 60–71

    Article  PubMed  Google Scholar 

  31. Lan, N., and T. Murakata. A realistic human elbow model for dynamic simulation. In: Proc. 25th Ann. Meeting ASB, San Diego, CA, pp. 267–268, August, 2001

  32. Lan, N., D. Song, and J. Gordon. Systems engineering approach to computational sensorimotor control. In: 28th International Symposium of Computational Neuroscience. Montréal, Canada, 2006

  33. Langenderfer J., Jerabek S. A., Thangamani V. I., Kuhn J. E., Hughes R. E. 2004 Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length. Clin. Biomech. 19: 664–670

    Article  Google Scholar 

  34. Lemay M. A., Crago P. E. 1996 A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 29(10):1319–1330

    Article  PubMed  CAS  Google Scholar 

  35. Lin C. C. K., Crago P. E. 2002 Structural model of the muscle spindle. Ann. Biomed. Eng. 30: 68–83

    Article  PubMed  CAS  Google Scholar 

  36. Loeb G. E., Brown I. E., Cheng E. J. 1999 A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 126: 1–18

    Article  PubMed  CAS  Google Scholar 

  37. Mileusnic M. P., Brown I. E., Lan N., Loeb G. E. Mathematical models of proprioceptors: I. Control and transduction in the muscle spindle J. Neurophysiol. 96(4):1772–1788, 2006

    Article  PubMed  Google Scholar 

  38. Mileusnic M. P., Loeb G. E. Mathematical models of proprioceptors: II. Structure and function of the Golgi tendon organ. J. Neurophysiol. 96(4):1172–1802, 2006

    Google Scholar 

  39. Murray W. M., Buchanan T. S., Delp S. L. 2000 The isometric functional capacity of muscles that cross the elbow. J. Biomech. 33: 943–952

    Article  PubMed  CAS  Google Scholar 

  40. Murray W. M., Delp S. L., Buchanan T. S. 1995 Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28: 513–525

    Article  PubMed  CAS  Google Scholar 

  41. Perreault E. J., Kirsch R. F., Crago P. E. 2002 Voluntary control of static endpoint stiffness during force regulation tasks. J. Neurophysiol. 87: 2808–2816

    PubMed  Google Scholar 

  42. Schweighofer N., Arbib M. A., Kawato M. 1998 Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur. J. Neurosci. 10: 86–94

    Article  PubMed  CAS  Google Scholar 

  43. Scott S. H., Loeb G. E. 1994 The computation of position sense from spindles in mono- and multiarticular muscles. J. Neurosci. 14: 7529–7540

    PubMed  CAS  Google Scholar 

  44. Seireg, A., and R. Arvikar. Biomechanical Analysis of the Musculoskeletal Structure for Medicine and Sports. Hemisphere Publishing Corp., p. 93, 1989

  45. Song, D., N. Lan, and J. Gordon. Biomechanical constraints on equilibrium point control of the multi-joint arm. A simulation study, ASB 2007 Conference, Stanford Univ., CA, August 2007

  46. Song, D., M. Mileusnic, N. Lan, and J. Gordon. A sensorimotor systems model for dynamic simulation of arm movement control. In: 16th Annual Neural Control of Movement Meeting. Key biscayn Florida, USA: 2006

  47. Stein R. B., Weber D. J., Aoyagi Y., Prochazka A., Wagenaar J. B. M., Shoham S., Normann R. A. 2004 Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion. J. Physiol. Lond. 560: 883–896

    Article  PubMed  CAS  Google Scholar 

  48. Veeger H. E. J, Yu B., An K. N., Rozendal R. H. 1997 Parameters for modeling the upper extremity. J. Biomech. 30: 647–652

    Article  PubMed  CAS  Google Scholar 

  49. Wood J. E., Meek S. G., Jacobsen S. C. 1989 Quantitation of human shoulder anatomy for prosthetic arm control. 1. Surface modeling. J. Biomech. 22, 273

    Article  PubMed  CAS  Google Scholar 

  50. Wu G., van der Helm F. C. T., Veeger H. E. J., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A. R., McQuade K., Wang X. G., Werner F. W., Buchholz B. 2005 ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38: 981–992

    Article  PubMed  CAS  Google Scholar 

  51. Yakovenko S., Gritsenko V., Prochazka A. 2004 Contribution of stretch reflexes to locomotor control: a modeling study. Biol. Cybern. 90, 146–155

    Article  PubMed  CAS  Google Scholar 

  52. Zajac F. E. 1989 Muscle and tendon—properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17: 359–411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The materials of this paper are based on the work supported by a grant from the NSF (IBN-0352117). The authors appreciate the assistance of Mr. Nayar in this project, the useful suggestions from Dr. Mileunsic. The authors wish to thank Dr. Murray for providing elbow muscle moment arm data, and Dr. Davoodi for programming MMS. Part of the shoulder/thorax complex in this model was obtained from Stanford University with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lan.

Appendix A

Appendix A

The muscle architectural parameters of each of the 15 muscles in the VA model were tuned step by step as described in Methods, Section “Virtual Muscle Model Parameters”. The physiological constraint for this tuning process is the fascicle length operating range within \( 0.45 \le \ifmmode\expandafter\bar\else\expandafter\=\fi{L}_{{{\text{ce}}}} \le 1 \) (See Fig. 6). At the same time, there has been a wide range of literature reports on muscle peak force (F 0), optimal fascicle length (L ce0), and tendon slack length (L ses). We compared the values of our VM parameters with those of experimental measurements and previous modeling approaches here in Table 5 on F 0, Table 6 on L ce0 and Table 7 on L ses. There is a large variability in the literature on each of the three sets of parameters due to the possible differences in experimental preparations and specimen size.17,18,20,24,33,39 However, our model parameters fall generally within the range of physiological values, and the VA model reproduces the realistic force generating capability of human arm muscles.

Table 5 comparison of muscle peak forces with literature values
Table 6 Comparison of optimal fascicle lengths with literature values
Table 7 Comparison of tendon slack length with literature values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Lan, N., Loeb, G.E. et al. Model-Based Sensorimotor Integration for Multi-Joint Control: Development of a Virtual Arm Model. Ann Biomed Eng 36, 1033–1048 (2008). https://doi.org/10.1007/s10439-008-9461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9461-8

Keywords

Navigation