Skip to main content
Log in

Bipedal walking gait generation based on the Sequential Method of Analytical Potential (SMAP)

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a method we have called the Sequential Method of Analytical Potential (SMAP). By taking account of a system’s actual capabilities via Dynamic Propulsion Potentials (DPP), this method aims to generate dynamic walking gaits for bipedal robots. The objective is to move the robot by acting directly on the actuator forces. The various accelerations governing the movements of the robot are controlled by direct, precise modification of its own dynamic effects, taking account of the robot’s intrinsic dynamics as well as the capabilities of the actuators moving the joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: IEEE International Conference on Robotics and Automation (ICRA), May, Leuven, Belgium, pp. 1321–1326 (1998)

    Google Scholar 

  2. Hirai, K.: Current and future perspective of Honda humanoid robot. In: IEEE International Conference on Intelligent Robots and Systems (IROS), September, Grenoble, France, pp. 500–508 (1997)

    Google Scholar 

  3. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE International Conference on Intelligent Robots and Systems (IROS), October, Lausanne, Suisse, pp. 2478–2483 (2002)

    Chapter  Google Scholar 

  4. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics plateform for HRP. In: IEEE International Conference on Intelligent Robots and Systems (IROS), September, Victoria, Canada, pp. 2431–2436 (1998)

    Google Scholar 

  5. Kaneko, K., Kanehiro, F., Kajita, S.: Humanoid robot HRP-2. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 1083–1090 (2004)

    Google Scholar 

  6. Kajita, S., Kaneko, K., Morisawa, M., Nakaoka, S., Hirukawa, H.: ZMP-based biped running enhanced by toe springs. In: IEEE International Conference on Robotics and Automation (ICRA), April, Rome, Italy, pp. 3963–3969 (2007)

    Google Scholar 

  7. Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko, K., Hirukawa, H.: Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In: IEEE International Conference on Robotics and Automation (ICRA), April, Rome, Italy, pp. 3989–3994 (2007)

    Google Scholar 

  8. Nagasaka, K., Kuroki, Y., Suzuki, S., Itoh, Y., Yamaguchi, J.: Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 3189–3194 (2004)

    Google Scholar 

  9. Kim, J.-Y., Park, I.-W., Lee, J., Kim, M.-S., Cho, B.-K., Oh, J.-H.: System design and dynamic walking of humanoid robot KHR-2. In: IEEE International Conference on Robotics and Automation (ICRA), April, Barcelona, Spain, pp. 1443–1448 (2005)

    Google Scholar 

  10. Kim, J.-H., Oh, J.-H.: Walking control of the humanoid plateform KHR-1 based on torque feedback control. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 623–628 (2004)

    Google Scholar 

  11. Ogura, Y., Akikawa, H., Lira, H., Takanishi, A.: Development of a human-like walking robot having two 7-DOF legs and a 2-DOF waist. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 134–139 (2004)

    Google Scholar 

  12. Lohmeier, S., Lffler, K., Gienger, M., Ulbrich, H., Pfeiffer, F.: Computer system and control of biped “Johnnie”. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 4222–4227 (2004)

    Google Scholar 

  13. Kagami, S., Nishiwaki, K., Kuffner, J.-J. Jr, Kuniyoshi, Y., Inaba, M., Inoue, H.: Online 3D vision, motion planning and biped locomotion control coupling system of humanoid robot: H7. In: IEEE International Conference on Intelligent Robots and Systems (IROS), August, Edmonton, Canada, pp. 2557–2562 (2005)

    Google Scholar 

  14. Schiehlen, W.: Energy-optimal design of walking machines. Multibody Syst. Dyn. 13(1), 129–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pratt, J.E., Chew, C.-M., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)

    Article  Google Scholar 

  16. Sabourin, C., Bruneau, O., Fontaine, J.-G.: Pragmatic rules for real-time control of the dynamic walking of an under-actuated biped robot. In: IEEE International Conference on Robotics and Automation (ICRA), April, New Orleans, USA, pp. 4216–4221 (2004)

    Google Scholar 

  17. Collins, S.H., Ruina, A.: A bipedal walking robot with efficient and human-like gait. In: IEEE International Conference on Robotics and Automation (ICRA), April, Barcelona, Spain, pp. 1983–1988 (2005)

    Google Scholar 

  18. Westervelt, E.R., Buche, G., Grizzle, J.W.: Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559–582 (2004)

    Article  Google Scholar 

  19. Canudas-de-Wit, C., Espiau, B., Urrea, C.: Orbital stabilization of underactuated mechanical systems. In: International Federation of Automatic Control (IFAC) 15th Triennial World Congress, July, Barcelona, Spain, pp. 75–82 (2002)

    Google Scholar 

  20. Bruneau, O., Ouezdou, F.-B., Fontaine, J.-G.: Dynamic walk of a bipedal robot having flexible feet. In: IEEE International Conference on Intelligent Robots and Systems (IROS), November, Maui, USA, pp. 512–517 (2001)

    Google Scholar 

  21. Chevallereau, C., Djoudi, D.: Underactuated planar robot controlled via a set of reference trajectories. In: International Conference on Climbing and Walking Robots (CLAWAR), September, Catania, Italy, pp. 535–542 (2003)

    Google Scholar 

  22. Bruneau, O., David, A.: Analytical approach for the generation of highly dynamic gaits for walking robots. In: IEEE International Conference on Intelligent Robots and Systems (IROS), October, Beijing, China, pp. 4453–4458 (2006)

    Google Scholar 

  23. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudas-de-Wit, C., Grizzle, J.W.: RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bruneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, A., Bruneau, O. Bipedal walking gait generation based on the Sequential Method of Analytical Potential (SMAP). Multibody Syst Dyn 26, 367–395 (2011). https://doi.org/10.1007/s11044-011-9265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9265-8

Keywords

Navigation