Skip to main content
Log in

Dynamics Modelling of Hexaslides using the Decoupled Natural Orthogonal Complement Matrices

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, dynamic model of a class of parallel systems, namely, the hexaslides, is proposed. The model developed is based on the concept the decoupled natural orthogonal complement (DeNOC) matrices, introduced elsewhere. The dynamic model of hexslides, though complex due to the existence of multi-loop kinematic chains, is required for actuator power estimation, computed-torque control, optimum tool trajectory generation, etc. The use of DeNOC offers many physical interpretations, recursive algorithms, and parallel computations. Using the proposed dynamic model, a parallel inverse dynamics algorithm has been presented to compute the actuator forces. This is useful to choose suitable motors for an application. An illustration is provided using an existing machine tool based on hexaslides, namely, the HexaM, while it is carrying out a circular contouring. Secondly, the effect of leg and slider inertias is also studied, which clearly suggests that neither of these can be neglected while finding the actuator forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. Stewart, D., A platform with six degrees of freedom, Proc. Instn. of Mechanical Engineers, (Part-I), 180(15), 1965, 371–386.

    Article  Google Scholar 

  2. 2. Boër, C. R., Molinori-Tosatti L. and Smith, K. S., Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements, Springer-Verlag, London, 1999.

    Google Scholar 

  3. 3. Honegger, M., Codourey, A. and Burdet, E., ‘Adaptive control of the Hexaglide, a 6 DOF parallel manipulator’, Proc. of IEEE- ICRA 97, Albuquerque, 1997, 543–548.

  4. 4. Suzuki, M., Watanabe, K., Shibukawa, T., Tooyama, T. and Hattori, K., ‘Development of milling machine with parallel mechanism’, Toyota Technical Review, 47(1), 1997, 125–130.

    Google Scholar 

  5. 5. Pritschow, G. and Wurst, K. H., ‘Systematic design of Hexapods and parallel link systems’, Annals of the CIRP, 46(1), 1997, 291–295.

    Google Scholar 

  6. 6. Tsai, L-W., Robot Analysis, John Wiley & Sons, Inc., New York, 1999.

    Google Scholar 

  7. 7. Merlet, J. P., Parallel Robots, Kluwer Academic Publishers, The Netherlands, 2000.

    MATH  Google Scholar 

  8. 8. Angeles, J., Fundamentals of Robotic Mechanical Systems, Springer-Verlag, New York, 2003.

    Google Scholar 

  9. 9. Hollerbach, J. M., ‘A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity’, IEEE Trans. on Sys., Man, and Cybernatics, V. SMC-10, 1980, 730–736.

  10. 10. Nakamura, Y. and Ghodoussi, M., ‘Dynamic computation of closed-link robot mechanisms with nonredundant and redundant actuators’, IEEE Trans. on Robotics and Auto., 5(3), 1989, 294–302.

    Article  Google Scholar 

  11. 11. Geng, Z., Haynes, L. S., Lee, J. D. and Carroll, R., L., ‘On the dynamic model and kinematic analysis of a class of Stewart platforms’, Robotics and Autonomous Systems, 9, 1992, 237–254.

    Article  Google Scholar 

  12. 12. Dasgupta B. and Mruthyunjaya, T.S., ‘A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator’, Mechanism and Machine Theory, 33(8), 1998, 1135–1152.

    MathSciNet  MATH  Google Scholar 

  13. 13. Gosselin, C. M., ‘Parallel computation algorithms for the kinematics and dynamics of parallel manipulators’, Trans. ASME, J. of Dynamic Systems Measurement and Control, 118(1), 1996.

  14. 14. Kim, J. P. and Ryu, J., ‘Closed-form forward dynamic equations of 6 DOF PUS type parallel manipulators’, Proc. ASME Design Engineering Technical Conferences (DETC2000), Baltimore, MD, 2000.

  15. 15. Kim, J. P. and Ryu, J., ‘Inverse Kinematic and Dynamic Analysis of 6 DOF PUS type parallel manipulators’, Proc. Int. Workshop on Parallel Kinematic Machine (PKM2000), 2000, 274–283.

  16. 16. Schiehlen, W., Multibody Systems Handbook, Springer-Verlag: New York, 1990.

    MATH  Google Scholar 

  17. 17. Blajer, W., Schiehlen, W. and Schirm, W., ‘Dynamic analysis of constrained multibody systems using inverse kinematics’, Mechanism and Machine Theory, 28(3), 1993, 397–405.

    Article  Google Scholar 

  18. 18. Angeles J. and Lee, S., ‘The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement’, ASME J. of Applied Mechanics, 55, 1988, 243–244.

    Google Scholar 

  19. 19. Angeles J. and Ma, O., ‘Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement’, Int. J. of Robotics Res., 7(5), 1988, 32–47.

    Article  Google Scholar 

  20. 20. Saha, S. K. and Angeles, J., ‘Dynamics of nonholonomic mechanical systems using a natural orthogonal complement’, ASME Trans. J. of Applied Mechanics, 58, 1991, 238–243.

    MATH  Google Scholar 

  21. 21. Ma, O. and Angeles, J., ‘Performance evaluation of path-generating planar, spherical and spatial four-bar linkages’, Mechanism and Machine Theory, 23(4), 1988, 257–268.

    Article  Google Scholar 

  22. 22. Ma, O., Mechanical analysis of parallel manipulators with simulation, design and control applications, Ph.D. Thesis, Dept. of Mechanical Eng., McGill University, Montreal, Canada, 1991.

  23. 23. Xi, F. and Sinatra, R., ‘Inverse dynamics of hexapods using the Natural Orthogonal Complement method’, J. of Manufacturing Systems, 21(2), 2002, 73–82.

    Article  Google Scholar 

  24. 24. Saha, S. K., ‘Dynamics of Serial Multibody Systems using the Decoupled Natural Orthogonal Complement Matrices’, ASME J. of Applied Mech., 66, 1999, 986–996.

    Article  Google Scholar 

  25. 25. Saha, S. K. and Schiehlen, W. O., ‘Recursive Kinematics and Dynamics for Parallel Structured Closed-loop Multibody Systems’, Mech. Struct. Mach., 29(2), 2001, 143–175.

    Article  Google Scholar 

  26. 26. Khan, W. A., Distributed dynamics of systems with closed kinematic chains, M. Eng. Thesis, Dept. Mechanical Eng., McGill University, Montreal, Canada, 2002.

  27. 27. Bonev, I. A. and Ryu, J., ‘A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators’, Mechanism and Machine Theory, 36(1), 2001, 1–13.

    Article  MATH  Google Scholar 

  28. 28. Stewart, G. W., Introduction to matrix computations, Academic Press, Inc., London, 1973.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.B.K., Saha, S.K. & Rao, P.V.M. Dynamics Modelling of Hexaslides using the Decoupled Natural Orthogonal Complement Matrices. Multibody Syst Dyn 15, 159–180 (2006). https://doi.org/10.1007/s11044-005-9003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-005-9003-1

Keywords

Navigation