Skip to main content
Log in

Review and comparison of empirical friction coefficient formulation for multibody dynamics of lubricated slotted joints

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In recent times, many industrial applications have demanded innovative energy-efficient solutions. One of the main causes of energy loss is due to friction between body surfaces in contact. A great amount of research has been aimed at understanding the friction mechanisms to allow for its reliable prediction during multibody simulation. In the 1950s and 1960s, many experimental studies were carried out, leading to the coefficient of friction formulas for lubricated surfaces under a combination of sliding and rolling relative motion. The formulas have been mainly derived by the mathematical fitting of results obtained from experimental measurements on rolling disks and different load, lubricating and kinematic conditions. The purpose of this paper is twofold: on the one hand, it reviews semi-empirical formulas for computing the friction coefficient in lubricated contact under various operating conditions; on the other hand, it implements and compares contact force models coupled with the metal-metal lubricated empirical friction formulas in a multibody dynamics simulation environment. Implementing empirical formulas is straightforward and computationally efficient, but one can evaluate the performance of these models in characterizing the dynamics of the lubricated joint. For this purpose, a multibody simulation of a Scotch yoke and a Whitworth quick return mechanisms with a nonideal prismatic joint are conducted. The existence of clearance causes the dynamic behavior of the system to be different from the ideal joint. The difference between each friction coefficient model is emphasized by simulation output and computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

\(\alpha\) :

Piezo-viscosity coefficient of the lubricant

\(\delta\) :

Contact penetration

\(\dot{\delta}\) :

Contact penetration velocity

\(\dot{\delta}_{0}\) :

Impact velocity

\(\eta_{0}\) :

Dynamic viscosity of the lubricant

\(\lambda\) :

Specific film thickness

\(\mu\) :

Friction coefficient

\(\nu_{0}\) :

kinematic viscosity of the lubricant

\(\omega\) :

Rotational speed

\(\rho\) :

Density of the lubricant

\(\vartheta\) :

Rotational angle

\(c_{d}\) :

Dynamic correction factor

\(c_{r}\) :

Restitution coefficient

\(E\) :

Young’s modulus

\(f_{n}\) :

Normal contact force per unit length

\(F_{n}\) :

Normal contact force

\(F_{t}\) :

Friction Force

\(G\) :

Material parameter of the Hamrock and Dowson formulation

\(h_{c}\) :

Oil central film thickness

\(K\) :

Contact stiffness

\(L\) :

Contact width

\(n\) :

Stiffness exponent

\(R_{e}\) :

Equivalent radius of curvature

\(R_{i}\) :

Curvature radius of surface \(i\)

\(S\) :

Surface roughness

\(U\) :

Velocity parameter of the Hamrock and Dowson formulation

\(V_{0}\) :

Static threshold velocity

\(V_{1}\) :

Dynamic threshold velocity

\(V_{\Sigma}\) :

Sum of profiles velocities

\(V_{e}\) :

Lubricant entraining velocity

\(V_{r}\) :

Rolling velocity

\(V_{s}\) :

Sliding velocity

\(W\) :

Load parameter of the Hamrock and Dowson formulation

References

  1. Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Bachelier (1809)

  2. Morin, A.: Note sur la resistance au roulement des corps les uns sur les autres et sur le reaction elastique des corps qui se comprime reciproquement. C. R. Acad. Sci. 13, 1022–1023 (1841)

    Google Scholar 

  3. Reynolds, O.: On rolling-friction. Philos. Trans. R. Soc. Lond. A 166, 155–174 (1876)

    Google Scholar 

  4. Merritt, H.E.: Worm gear performance. Proc. Inst. Mech. Eng. 129(1), 127–194 (1935)

    Article  Google Scholar 

  5. Tabor, D.: The mechanism of rolling friction II. The elastic range. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 229(1177), 198–220 (1955)

    Google Scholar 

  6. Eldredge, K., Tabor, D.: The mechanism of rolling friction. I. The plastic range. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 229(1177), 181–198 (1955)

    Google Scholar 

  7. Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Br. J. Appl. Phys. 17(12), 1521–1544 (1966)

    Article  Google Scholar 

  8. Hersey, M.D.: Rolling friction, I - historical introduction. J. Lubr. Technol. 91(2), 260–263 (1969)

    Article  Google Scholar 

  9. Hersey, M.D.: Rolling friction, III - review of later investigations. J. Lubr. Technol. 91(2), 269–275 (1969)

    Article  Google Scholar 

  10. Martin, K.: A review of friction predictions in gear teeth. Wear 49(2), 201–238 (1978)

    Article  Google Scholar 

  11. Michlin, Y., Myunster, V.: Determination of power losses in gear transmissions with rolling and sliding friction incorporated. Mech. Mach. Theory 37(2), 167–174 (2002)

    Article  Google Scholar 

  12. Stefanelli, R., Valentini, P.P., Vita, L.: Modelling hydrodynamic journal bearing in 3d multibody systems. In: ASME-IDETC/CIE 2005, sep American Society of Mechanical Engineers, Long Beach (2005)

    Google Scholar 

  13. Flores, P., Ambrósio, J.A.C.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  14. Flores, P., Ambrósio, J.A.C., Pimenta Claro, J.C., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  Google Scholar 

  15. Zhao, B., Cui, Y., Xie, Y., Zhou, K.: Dynamics and lubrication analyses of a planar multibody system with multiple lubricated joints. J. Eng. Tribol. 232(3), 326–346 (2018)

    Google Scholar 

  16. Zhao, B., Zhou, K., Xie, Y.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016)

    Article  Google Scholar 

  17. Fang, C., Meng, X., Lu, Z., Wu, G., Tang, D., Zhao, B.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019)

    Article  Google Scholar 

  18. Velex, P., Cahouet, V.: Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics. J. Mech. Des. 122(4), 515–522 (2000)

    Article  Google Scholar 

  19. Mushirabwoba, B., Belfals, L., Brahim, N., Abdelilah, L.: A comparative study of friction laws used in spur gear power losses estimation. Contemp. Eng. Sci. 9(6), 279–288 (2016)

    Google Scholar 

  20. Song, N., Peng, H., Kan, Z., Chen, B.: A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dyn. 102(3), 1375–1408 (2020)

    Article  Google Scholar 

  21. Peng, H., Song, N., Li, F., Tang, S.: A mechanistic-based data-driven approach for general friction modeling in complex mechanical system. J. Appl. Mech. 89(7), 071005 (2022)

    Article  Google Scholar 

  22. Kan, Z., Peng, H., Chen, B.: A simple linear complementarity approach for sliding cable modeling considering friction. Mech. Syst. Signal Process. 130, 293–314 (2019)

    Article  Google Scholar 

  23. Song, N., Zhang, M., Li, F., Kan, Z., Zhao, J., Peng, H.: Dynamic research on winding and capturing of tensegrity flexible manipulator. Mech. Mach. Theory 193, 105554 (2024)

    Article  Google Scholar 

  24. Flores, P., Ambrósio, J.A.C., Pimenta Claro, J.C., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2010)

    Google Scholar 

  25. Flores, P., Lankarani, H.M.: Contact Force Models for Multibody Dynamics. Solid Mechanics and Its Applications, vol. 226. Springer, Cham (2016)

    Google Scholar 

  26. Autiero, M., Cera, M., Cirelli, M., Pennestrì, E., Valentini, P.P.: Review with analytical-numerical comparison of contact force models for slotted joints in machines. Machines 10(11), 966 (2022)

    Article  Google Scholar 

  27. Schwab, A., Meijaard, J., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002)

    Article  Google Scholar 

  28. Pereira, C., Ramalho, A., Ambrósio, J.A.C.: Experimental and numerical validation of an enhanced cylindrical contact force model. In: De Hosson, J.M., Brebbia, C. (eds.) Surface Effects and Contact Mechanics X. Volume 1 of WIT Transactions on Engineering Sciences, sep, pp. 49–60. WIT Press, Southampton (2011)

    Google Scholar 

  29. Pereira, C., Ramalho, A., Ambrósio, J.A.C.: Applicability domain of internal cylindrical contact force models. Mech. Mach. Theory 78, 141–157 (2014)

    Article  Google Scholar 

  30. Skrinjar, L., Slavič, J., Boltežar, M.: A validated model for a pin-slot clearance joint. Nonlinear Dyn. 88(1), 131–143 (2017)

    Article  Google Scholar 

  31. Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Article  Google Scholar 

  32. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  33. Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35, 277–298 (2015)

    Article  Google Scholar 

  34. Johnson, K.L.: Contact Mechanics, Reprint edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  35. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83, 1785–1801 (2016)

    Article  Google Scholar 

  36. Andersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40(4), 580–587 (2007)

    Article  Google Scholar 

  37. Zhang, Y., Liu, H., Zhu, C., Liu, M., Song, C.: Oil film stiffness and damping in an elastohydrodynamic lubrication line contact-vibration. J. Mech. Sci. Technol. 30, 3031–3039 (2016)

    Article  Google Scholar 

  38. Stribeck, R.: Die wesentlichen eigenschaften der gleit-und rollenlager. Z. Ver. Dtsch. Ing. 46, 1341–1348 (1902)

    Google Scholar 

  39. Benedict, G.H., Kelley, B.W.: Instantaneous coefficients of gear tooth friction. A S L E Trans. 4(1), 59–70 (1961)

    Article  Google Scholar 

  40. Tallián, T.: The theory of partial elastohydrodynamic contacts. Wear 21, 49–101 (1972)

    Article  Google Scholar 

  41. Arana, A., Larrañaga, J., Ulacia, I.: Partial ehl friction coefficient model to predict power losses in cylindrical gears. J. Eng. Tribol. 233(2), 303–316 (2019)

    Google Scholar 

  42. Xu, H.: A novel formula for instantaneous coefficients of sliding friction in gearing. Technical report, SAE Technical Paper (2007)

  43. Autiero, M., Cirelli, M., Paoli, G., Valentini, P.P.: A data-driven approach to estimate the power loss and thermal behaviour of cylindrical gearboxes under transient operating conditions. Lubricants 11(7), 303 (2023)

    Article  Google Scholar 

  44. Anderson, N.E., Loewenthal, S.H.: Design of spur gears for improved efficiency (1982)

  45. Blok, H.: Hydrodynamic effects on friction in rolling with slippage. In: Bidwell, J. (ed.) Rolling Contact Phenomena, pp. 186–251. Elsevier, Amsterdam (1962)

    Google Scholar 

  46. Misharin, Y.: Influence of the friction conditions on the magnitude of the friction cefficients in the case of rolling with sliding. In: Proceedings International Conference on Gearing, Institution of Mechanical Engineers, pp. 159–164 (1958)

    Google Scholar 

  47. Sasaki, T., Okamura, K., Isogai, R.: Fundamental research on gear lubrication. Bull. JSME 4(14), 382–394 (1961)

    Article  Google Scholar 

  48. Askwith, T., Crouch, R., Cameron, A.: The relationship of lubricants and additives for optimum effect; and a theory of scuffing. In: Proceedings International Conference on Gear Lubrication. Institution of Mechanical Engineers (1966)

    Google Scholar 

  49. Kelley, B.W., Lemanski, A.J.: Paper 11: lubrication of involute gearing. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 182(1), pp. 173–184 (1967)

    Google Scholar 

  50. Leach, E.F., Kelley, B.W.: Temperature - the key to lubricant capacity. A S L E Trans. 8(3), 271–285 (1965)

    Article  Google Scholar 

  51. O’Donoghue, J.P., Cameron, A.: Friction and temperature in rolling sliding contacts. A S L E Trans. 9(2), 186–194 (1966)

    Article  Google Scholar 

  52. Drozdov, Y., Gavrikov, Y.: Friction and scoring under the conditions of simultaneous rolling and sliding of bodies. Wear 11(4), 291–302 (1968)

    Article  Google Scholar 

  53. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  54. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part iii—fully flooded results (1977)

Download references

Funding

This research was funded by Italian Ministry for University and Research, project PRIN 2020: “Innovative Contact Based multibody models for noise and vibration prediction in high-performance gears” grant number 202022Y4N5. CUP: E85F22000220006

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.C., M.A., G.P., E.P., N.P.B. and P.P.V.; methodology, M.C., M.A., G.P., E.P., N.P.B. and P.P.V.; software, M.C., M.A., G.P., E.P.; validation, M.C., M.A., G.P.; formal analysis, M.C., M.A., G.P., E.P., N.P.B. and P.P.V.; investigation, M.C., M.A., G.P., E.P., N.P.B. and P.P.V.; resources, P.P.V.; data curation, M.A., G.P., E.P.; writing—original draft preparation, M.C., M.A., G.P.; writing—review and editing, E.P., N.P.B. and P.P.V.; visualization, M.C., M.A., G.P.; supervision, M.C., E.P. and P.P.V.; project administration, M.C.,and P.P.V.; funding acquisition, P.P.V. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marco Cirelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirelli, M., Autiero, M., Belfiore, N.P. et al. Review and comparison of empirical friction coefficient formulation for multibody dynamics of lubricated slotted joints. Multibody Syst Dyn (2024). https://doi.org/10.1007/s11044-024-09988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-024-09988-y

Keywords

Navigation