Skip to main content

Advertisement

Log in

Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Medical imaging plays an essential role in modern healthcare, helping accurate diagnoses and effective treatment strategies. Still, the quality and interpretability of medical images are regularly hindered by various sources of noise. This paper presents a comprehensive exploration of traditional noise reduction techniques in medical imaging, addressing challenges posed by quantum noise, electronic noise, radiation interference, and other factors. The study delves into spatial filtering, frequency domain filtering, statistical methods, probability-based noise reduction, and adaptive filtering techniques. Each method is analyzed for its applicability and effectiveness in mitigating noise while preserving diagnostically relevant information. The comparative analysis provides insights into the strengths and limitations of these techniques, guiding practitioners in selecting appropriate methods based on imaging modalities and noise characteristics. Also, the paper highlights future research directions, emphasizing the potential of advanced Machine Learning (ML) models and the integration of multimodal data for enhanced noise removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Li D (2014) A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans Signal Inf Process 3

  2. Hinton GE (2006) Reducing the dimensionality of data with neural networks. Sci. 313:504–507

    Article  MathSciNet  Google Scholar 

  3. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst 19

  4. Silver D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489

    Article  Google Scholar 

  5. Hinton RSZ, Geoffrey E (1994) Autoencoders, minimum description length and Helmholtz free energy. Adv Neural Inf Process Syst 3

  6. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Sci. 313:5786

    MathSciNet  Google Scholar 

  7. Yap MH et al (2017) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Heal Inf 22:1218–1226

    Article  Google Scholar 

  8. Jiménez-Sánchez A, Tardy M, Ballester MAG, Mateus D, Piella G (2023) Memory-aware curriculum federated learning for breast cancer classification. Comput Methods Prog Biomed 229:107318

    Article  Google Scholar 

  9. Karthik R, Menaka R, Siddharth M (2022) Classification of breast cancer from histopathology images using an ensemble of deep multiscale networks. Biocybern Biomed Eng 42:963–976

    Article  Google Scholar 

  10. Ravelli A et al (2015) Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumor Biol 36:6653–65

    Article  Google Scholar 

  11. Houssein EH, Emam MM, Ali AA (2022) An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput Appl 34(18015):18033

    Google Scholar 

  12. Priyadarshi R, Gupta B (2023) 2-D coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomput 79(5):4847–4869. https://doi.org/10.1007/s11227-022-04832-6

    Article  Google Scholar 

  13. Priyadarshi R, Rawat P, Nath V (2019) Energy dependent cluster formation in heterogeneous wireless sensor network. Microsyst Technol 25(6):2313–2321. https://doi.org/10.1007/s00542-018-4116-7

    Article  Google Scholar 

  14. Piantadosi G, Sansone M, Fusco R, Sansone C (2020) Multi-planar 3d breast segmentation in MRI via deep convolutional neural networks. Artif Intell Med 103:101781

    Article  Google Scholar 

  15. Oloomi M, Moazzezy N, Bouzari S (2020) Comparing blood versus tissue-based biomarkers expression in breast cancer patients. Heliyon 6:e03728

    Article  Google Scholar 

  16. Rawat P, Chauhan S, Priyadarshi R (2020) Energy-efficient clusterhead selection scheme in heterogeneous wireless sensor network. J Circ Syst Comput 29(13):2050204. https://doi.org/10.1142/S0218126620502047

    Article  Google Scholar 

  17. Nissan N, Bauer E, Moss Massasa EE, Sklair-Levy M (2022) Breast MRI during pregnancy and lactation: clinical challenges and technical advances. Insights Imaging 13:71

    Article  Google Scholar 

  18. Lu W, Li Z, Chu J (2017) A novel computer-aided diagnosis system for breast MRI based on feature selection and ensemble learning. Comput Biol Med 83:157–165

    Article  Google Scholar 

  19. Salama WM, Elbagoury AM, Aly MH (2020) Novel breast cancer classification framework based on deep learning. IET Image Proc 14,

  20. Ramadan SZ (2020) Methods used in computer-aided diagnosis for breast cancer detection using mammograms: a review. J Heal Eng 2020:9162464

    Google Scholar 

  21. Pandey A, Kumar D, Priyadarshi R, Nath V (2023) Development of smart village for better lifestyle of farmers by crop and health monitoring system. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 887, pp. 689–694). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_57

  22. Mohanta BK, Jena D, Mohapatra N, Ramasubbareddy S, Rawal BS (2022) Machine learning based accident prediction in secure IoT enable transportation system. J Intell Fuzzy Syst 42(713):725

    Google Scholar 

  23. Matsumoto Y, Katsumura A, Miki N (2022) Pressure-controlled ultrasound probe for reliable imaging in breast cancer diagnosis. Jpn J Appl Phys 61:SD1035

    Article  Google Scholar 

  24. Priyadarshi R, Gupta B, Anurag A (2020) Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomput 76(9):7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  25. Sethy PK, Behera SK (2022) Automatic classification with concatenation of deep and handcrafted features of histological images for breast carcinoma diagnosis. Multimed Tools Appl 81:9631–9643

    Article  Google Scholar 

  26. Priyadarshi R, Soni SK, Nath V (2018) Energy efficient cluster head formation in wireless sensor network. Microsyst Technol 24(12):4775–4784. https://doi.org/10.1007/s00542-018-3873-7

    Article  Google Scholar 

  27. Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D coverage optimization in WSN using a novel variant of particle swarm optimisation. 2020 7th International Conference on Signal Processing and Integrated Networks, SPIN 2020, 663–668. https://doi.org/10.1109/SPIN48934.2020.9070978

  28. Al Ewaidat H, Ayasrah M (2022) A concise review on the utilization of abbreviated protocol breast MRI over full diagnostic protocol in breast cancer detection. Int J Biomed Imaging 2022:1–8

    Article  Google Scholar 

  29. Sahiner B et al (2007) Malignant and benign breast masses on 3d us volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242:716–724

    Article  Google Scholar 

  30. Petrova D et al (2022) Duration of the patient interval in breast cancer and factors associated with longer delays in low-and middle-income countries: a systematic review with meta-analysis. Psychooncology. 32:13–24

    Article  Google Scholar 

  31. Priyadarshi R, Gupta B (2021) Area Coverage Optimization in Three-Dimensional Wireless Sensor Network. Wireless Pers Commun 117(2):843–865. https://doi.org/10.1007/s11277-020-07899-7

    Article  Google Scholar 

  32. Taheri S, Golrizkhatami Z (2022) Magnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approaches. Signal Image Video Process 2022

  33. Joseph C et al (2018) Breast cancer intratumour heterogeneity: current status and clinical implications. Histopathology 73:717–731

    Article  Google Scholar 

  34. Gonçalves CB, Souza JR, Fernandes H (2022) CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Comput Biol Med 142:105205

    Article  Google Scholar 

  35. Krithiga R, Geetha P (2021) Breast cancer detection, segmentation and classification on histopathology images analysis: a systematic review. Arch Comput Methods Eng 28:2607–2619

    Article  Google Scholar 

  36. Ruan D, Sun L (2022) Diagnostic performance of PET/MRI in breast cancer: a systematic review and Bayesian bivariate meta-analysis. Clin Breast Cancer 23(108):124

    Google Scholar 

  37. Jeleń Ł, Krzyżak A, Fevens T, Jeleń M (2016) Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies. Comput Biol Med 79:80–91

    Article  Google Scholar 

  38. ElOuassif B, Idri A, Hosni M, Abran A (2021) Classification techniques in breast cancer diagnosis: a systematic literature review. Comput Methods Biomech Biomed Eng 9:50–77

    Google Scholar 

  39. Priyadarshi R, Nath V (2019) A novel diamond–hexagon search algorithm for motion estimation. Microsyst Technol 25(12):4587–4591. https://doi.org/10.1007/s00542-019-04376-5

    Article  Google Scholar 

  40. Lee J, Kang BJ, Park GE, Kim SH (2022) The usefulness of magnetic resonance imaging (MRI) for the detection of local recurrence after mastectomy with reconstructive surgery in breast cancer patients. Diagnostics 12:2203

    Article  Google Scholar 

  41. Mehrotra R, Yadav K (2022) Breast cancer in India: present scenario and the challenges ahead. World J Clin Oncol 13:209–218

    Article  Google Scholar 

  42. Wu YC et al (1995) Classification of microcalcifications in radiographs of pathologic specimens for the diagnosis of breast cancer. Acad Radiol 2:199–104

    Article  Google Scholar 

  43. Mohamed A et al (2022) The impact of data processing and ensemble on breast cancer detection using deep learning. J Comput Commun 1

  44. Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A Novel Approach for Sink Route in Wireless Sensor Network. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 887, pp. 695–703). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_58

  45. Priyadarshi R, Singh L, Randheer, Singh A (2018) A Novel HEED Protocol for Wireless Sensor Networks. 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 296–300. https://doi.org/10.1109/SPIN.2018.8474286

  46. Singh VK et al. (2020) Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert SystAppl 139

  47. Trister AD, Buist DS, Lee CI (2017) Will machine learning tip the balance in breast cancer screening? JAMA Oncol 3

  48. Hu Q et al (2021) Improved classification of benign and malignant breast lesions using deep feature maximum intensity projection MRI in breast cancer diagnosis using dynamic contrast-enhanced MRI. Radiology 3

  49. Galati F et al (2022) Radiologic-pathologic correlation in breast cancer: do MRI biomarkers correlate with pathologic features and molecular subtypes? Eur Radiol Exp 6:39

    Article  Google Scholar 

  50. Mann RM et al (2022) Breast cancer screening in women with extremely dense breasts recommendations of the European society of breast imaging (eusobi). Eur Radiol 32:4036–4045

    Article  Google Scholar 

  51. Zeiser FA et al (2021) Deepbatch: a hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images. Expert Syst Appl 185:115586

    Article  Google Scholar 

  52. Pramanik R, Pramanik P, Sarkar R (2023) Breast cancer detection in thermograms using a hybrid of GA and GWO based deep feature selection method. Expert Syst Appl 219

  53. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2015) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63

  54. Pal UM et al (2021) Hybrid spectral-irdx: near-ir and ultrasound attenuation system for differentiating breast cancer from adjacent normal tissue. IEEE Trans Biomed Eng 68:3554–3563

    Article  Google Scholar 

  55. Joseph AA, Abdullahi M, Junaidu SB, Ibrahim HH, Chiroma H (2022) Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Intell Syst Appl 14:200066

    Google Scholar 

  56. Barrios CH (2022) Global challenges in breast cancer detection and treatment. Breast 62

  57. Shen L et al (2019) Deep learning to improve breast cancer detection on screening mammography. Sci Rep 9:3–6

    Article  Google Scholar 

  58. Ahmadian S, Ahmadian M, Jalili M (2022) A deep learning based trust-and tag-aware recommender system. Neurocomputing 488:557–571

    Article  Google Scholar 

  59. Moreira IC et al (2012) Inbreast: toward a full-field digital mammographic database. Acad Radiol 19:236–48

    Article  Google Scholar 

  60. Thompson JL, Wright GP (2021) The role of breast MRI in newly diagnosed breast cancer: an evidence-based review. Am J Surg 221:525–528

    Article  Google Scholar 

  61. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther 11:151–164

    Article  Google Scholar 

  62. Yusuf A, Okafor I, Olubodun T, Onigbogi O (2022) Breast cancer knowledge and screening practices among undergraduates in a Nigerian tertiary institution, southwest region. Afr Heal Sci 4

  63. Hussein H et al. (2023) Supplemental breast cancer screening in women with dense breasts and negative mammography: a systematic review and meta-analysis. Radiology 306

  64. Koh J, Yoon Y, Kim S, Han K, Kim E-K (2022) Deep learning for the detection of breast cancers on chest computed tomography. Clin Breast Cancer 22:26–31

    Article  Google Scholar 

  65. Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H (2021) A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 9:71194–71209

    Article  Google Scholar 

  66. Boersma L et al (2022) Model-based selection for proton therapy in breast cancer: development of the national indication protocol for proton therapy and first clinical experiences. Clin Oncol 34:88–94

    Article  Google Scholar 

  67. Wang X et al (2022) Intelligent hybrid deep learning model for breast cancer detection. Electronics 11:2767

    Article  Google Scholar 

  68. Volterrani L et al (2020) Dual-energy CT for locoregional staging of breast cancer: preliminary results. Am J Roentgenol 214

  69. Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: Stable Energy Efficient Network for Wireless Sensor Network. 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 338–342. https://doi.org/10.1109/SPIN.2018.8474228

  70. Suckling J (1994) The mammographic images analysis society digital mammogram database. Exerpta Medica 1069:236–248

    Google Scholar 

  71. Yang X et al (2020) Deep learning signature based on staging CT for preoperative prediction of sentinel lymph node metastasis in breast cancer. Acad Radiol 27:1226–1233

    Article  Google Scholar 

  72. Castro-Tapia S et al (2021) Classification of breast cancer in mammograms with deep learning adding a fifth class. Appl Sci 11:11398

    Article  Google Scholar 

  73. Hadebe B, Harry L, Ebrahim T, Pillay V, Vorster M (2023) The role of PET/CT in breast cancer. Diagnostics 13:429–437

    Article  Google Scholar 

  74. Sahu A, Das PK, Meher S (2023) High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control 80:104292

    Article  Google Scholar 

  75. Yassin NI, Omran S, Houby EM, Allam H (2018) Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Prog Biomed 156:25–45

    Article  Google Scholar 

  76. Aslan MF (2023) A hybrid end-to-end learning approach for breast cancer diagnosis: convolutional recurrent network. Comput Electr Eng 105:108562

    Article  Google Scholar 

  77. Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three level heterogeneous clustering protocol for wireless sensor network. Microsyst Technol 26(12):3855–3864. https://doi.org/10.1007/s00542-020-04874-x

    Article  Google Scholar 

  78. Bouron C et al (2022) Prognostic value of metabolic, volumetric and textural parameters of baseline [18f] FDG PET/CT in early triple-negative breast cancer. Cancers (Basel). 14:637

    Article  Google Scholar 

  79. Dhillon A, Singh A (2020) ebrecap: extreme learning-based model for breast cancer survival prediction. IET Syst Biol 14:160–169

    Article  Google Scholar 

  80. Desai S, Kanphade R, Priyadarshi R, Rayudu KVBV, Nath V (2023) A novel technique for detecting crop diseases with efficient feature extraction. IETE J Res, 1–9.https://doi.org/10.1080/03772063.2023.2220667

  81. Chen X et al. (2020) CNN-based quality assurance for automatic segmentation of breast cancer in radiotherapy. Front Oncol 10

  82. Priyadarshi R, Bhardwaj P, Gupta P, Nath V (2023) Utilization of smartphone-based wireless sensors in agricultural science: A State of Art. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 887, pp. 681–688). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_56

  83. Nassif AB, Talib MA, Nasir Q, Afadar Y, Elgendy O (2022) Breast cancer detection using artificial intelligence techniques: a systematic literature review. Artif Intell Med 127:102276

    Article  Google Scholar 

  84. Araújo T et al (2017) Classification of breast cancer histology images using convolutional neural networks. PLoS One 12:e0177544

    Article  Google Scholar 

  85. Priyadarshi R, Singh A, Agarwal D, Verma UC, Singh A (2023) Emerging Smart Manufactory: Industry 4.0 and Manufacturing in India: The Next Wave. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 887, pp. 353–363). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_32

  86. Moon WK et al (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Prog Biomed 190:106271

    Google Scholar 

  87. Pan P et al (2021) Tumor segmentation in automated whole breast ultrasound using bidirectional lSTM neural network and attention mechanism. Ultrasonics 110:106271

    Article  Google Scholar 

  88. Gupta T, Kumar A, Priyadarshi R (2020) A novel hybrid precoding technique for millimeter wave. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 642, pp. 481–493). Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_42

  89. Singh C, Imam T, Wibowo S, Grandhi S (2022) A deep learning approach for sentiment analysis of covid-19 reviews. Appl Sci 12:3709

    Article  Google Scholar 

  90. Sateesh VA, Kumar A, Priyadarshi R, Nath V (2021) A novel deployment scheme to enhance the coverage in wireless sensor network. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 673, pp. 985–993). Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_82

  91. Hamed G, Marey M, Amin SE, Tolba MF (2021) Automated breast cancer detection and classification in full field digital mammograms using two full and cropped detection paths approach. IEEE Access 9:116898–116913

    Article  Google Scholar 

  92. Tong L, Mitchel J, Chatlin K, Wang MD (2020) Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. BMC Med Inf. Decis Mak 20:225

    Article  Google Scholar 

  93. Wang Q et al (2022) Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol 32:7163–7172

    Article  Google Scholar 

  94. Trang NTH, Long KQ, An PL, Dang TN (2023) Development of an artificial intelligence-based breast cancer detection model by combining mammograms and medical health records. Diagnostics 13:346

    Article  Google Scholar 

  95. Singh L, Kumar A, Priyadarshi R (2020) Performance and comparison analysis of image processing based forest fire detection. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 642, pp. 473–479). Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_41

  96. Mehra R (2018) Breast cancer histology images classification: training from scratch or transfer learning? ICT Express 4:247–254

    Article  Google Scholar 

  97. Huang Q, Chen Y, Liu L, Tao D, Li X (2019) On combining biclustering mining and adaboost for breast tumor classification. IEEE Trans Knowl Data Eng 32:728–738

    Article  Google Scholar 

  98. Dewangan KK, Dewangan DK, Sahu SP, Janghel R (2022) Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimed Tools Appl 81:13935–13960

    Article  Google Scholar 

  99. Graham LJ et al (2014) Current approaches and challenges in monitoring treatment responses in breast cancer. J Cancer 5

  100. Shim S et al (2023) Radiation dose estimates based on Monte Carlo simulation for spiral breast computed tomography imaging in a large cohort of patients. Med Phys 50:2417–2428

    Article  Google Scholar 

  101. Priyadarshi R, Yadav S, Bilyan D (2019) Performance analysis of adapted selection based protocol over LEACH protocol. In A. K. Luhach, K. B. G. Hawari, I. C. Mihai, P.-A. Hsiung, & R. B. Mishra (Eds.), Smart Computational Strategies: Theoretical and Practical Aspects (pp. 247–256). Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_21

  102. Bruckmann NM et al (2021) Prospective comparison of the diagnostic accuracy of 18f-fdg PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone metastases in the initial staging of primary breast cancer patients. Eur Radiol 31:8714–8724

    Article  Google Scholar 

  103. Kumar S, Soni SK, Randheer, Priyadarshi R (2020). Performance analysis of novel energy aware routing in wireless sensor network. In: V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 642, pp. 503–511). Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44

  104. Thawani R et al (2022) Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study. BMC Med Imaging 22:182

    Article  Google Scholar 

  105. Shim S et al (2022) Fully automated breast segmentation on spiral breast computed tomography images. J Appl Clin Med Phys 23:e13726

    Article  Google Scholar 

  106. Pérez-Benito FJ et al (2020) A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation. Comput Methods Prog Biomed 195:105668

    Article  Google Scholar 

  107. Priyadarshi, R., Yadav, S., & Bilyan, D. (2019). Performance and comparison analysis of MIEEP routing protocol over adapted LEACH protocol. In A. K. Luhach, K. B. G. Hawari, I. C. Mihai, P.-A. Hsiung, & R. B. Mishra (Eds.), Smart Computational Strategies: Theoretical and Practical Aspects (pp. 237–245). Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_20

  108. Zipkin RJ et al (2022) Rural-urban differences in breast cancer surgical delays in medicare beneficiaries. Ann Surg Oncol 29:5759–5769

    Article  Google Scholar 

  109. Debelee TG, Schwenker F, Ibenthal A, Yohannes D (2020) Survey of deep learning in breast cancer image analysis. Evol Syst 11:5759–5769

    Article  Google Scholar 

  110. Priyadarshi R, Gupta B (2020) Coverage area enhancement in wireless sensor network. Microsyst Technol 26(5):1417–1426. https://doi.org/10.1007/s00542-019-04674-y

    Article  Google Scholar 

  111. Kang BJ, Kim MJ, Shin HJ, Moon WK (2022) Acquisition and interpretation guidelines of breast diffusion-weighted MRI (DW-MRI): breast imaging study group of korean society of magnetic resonance in medicine recommendations. Investig Magn Reson. Imaging 26:83–95

    Article  Google Scholar 

  112. Priyadarshi R, Thakur A, Singh AD (2019) Performance evaluation space-time interest points using branching particle filters. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 556, pp. 83–90). Springer Singapore. https://doi.org/10.1007/978-981-13-7091-5_8

  113. Formaz E et al (2023) Dedicated breast computed-tomography in women with a personal history of breast cancer: a proof-of-concept study. Eur J Radiol 158:110632

    Article  Google Scholar 

  114. Ren T, Lin S, Huang P, Duong TQ (2022) Convolutional neural network of multiparametric MRI accurately detects axillary lymph node metastasis in breast cancer patients with pre neoadjuvant chemotherapy. Clin Breast Cancer 22:170–177

    Article  Google Scholar 

  115. Priyadarshi R, Gupta B, Anurag A (2020) Wireless sensor networks deployment: A result oriented analysis. Wireless Pers Commun 113(2):843–866. https://doi.org/10.1007/s11277-020-07255-9

    Article  Google Scholar 

  116. Boukerroui D, Basset O, Guerin N, Baskurt A (1998) Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation. Eur J Ultrasound 8:135–144

    Article  Google Scholar 

  117. Priyadarshi R, Kumar RR (2021) An energy-efficient LEACH routing protocol for wireless sensor networks. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 673, pp. 423–430). Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_35

  118. Corke L et al (2022) Clinical utility of MRI in the neoadjuvant management of early-stage breast cancer. Breast Cancer Res Treat 194:587–595

    Article  Google Scholar 

  119. Torres-Galván JC et al (2022) Deep convolutional neural networks for classifying breast cancer using infrared thermography. Quant InfraRed Thermogr J 19:283–294

    Article  Google Scholar 

  120. Wang J, Yang Y (2018) A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recogn 78:12–22

    Article  Google Scholar 

  121. Deepak S, Ameer PM (2019) Brain tumor classification using deep cnn features via transfer learning. Comput Biol Med 111:103345

    Article  Google Scholar 

  122. Priyadarshi R, Soni SK, Sharma P (2019) An enhanced GEAR protocol for wireless sensor networks. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 511, pp. 289–297). Springer Singapore. https://doi.org/10.1007/978-981-13-0776-8_27

  123. Liu J et al. (2014) A survey of mri-based brain tumor segmentation methods. Tsinghua Sci Technol 19

  124. Burgos N, Bottani S, Faouzi J, Thibeau-Sutre E, Colliot O (2021) Deep learning for brain disorders: from data processing to disease treatment. Br Bioinform 22:1560–1576

    Article  Google Scholar 

  125. (2017) An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet transform and neural networks. Int J Imaging Syst Technol 27

  126. Mittal M et al (2019) Deep learning based enhanced tumor segmentation approach for mr brain images. Appl Soft Comput 78:346–354

    Article  Google Scholar 

  127. Ali S et al (2020) An effective and improved cnn-elm classifier for handwritten digits recognition and classification. Symmetry (Basel). 12:1742

    Article  Google Scholar 

  128. Priyadarshi R, Singh MP, Bhardwaj A, Sharma P (2017) Amount of fading analysis for composite fading channel using holtzman approximation. 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua, 454–458. https://doi.org/10.1109/ICIIP.2017.8313759

  129. Han S, Choi JY (2021) Impact of 18f-fdg PET, PET/CT, and PET/MRI on staging and management as an initial staging modality in breast cancer: a systematic review and meta-analysis. Clin Nucl Med 46:271–282

    Article  Google Scholar 

  130. Houssami N, Hayes DF (2009) Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 59:290–302

    Article  Google Scholar 

  131. Antunovic L et al (2019) PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 46:1468–1477

    Article  Google Scholar 

  132. Mankoff DA, Sellmyer MA (2022) PET of fibroblast-activation protein for breast cancer diagnosis and staging. (Radiological Society of North America, 2022). https://doi.org/10.1148/radiol.2021212098.

  133. Duffy MJ, Walsh S, McDermott EW, Crown J (2015) Biomarkers in breast cancer: where are we and where are we going? Adv Clin Chem 71:1–23

    Article  Google Scholar 

  134. Hildebrandt MG, Naghavi-Behzad M, Vogsen M (2022) A role of FDG-PET/CT for response evaluation in metastatic breast cancer? Semin Nucl Med 52:520–530

    Article  Google Scholar 

  135. Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304

    Article  Google Scholar 

  136. Patil RS, Biradar N (2021) Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evol Intell 14:1459–1474

    Article  Google Scholar 

  137. Alanazi A (2022) Using machine learning for healthcare challenges and opportunities. Inf. Med Unlocked 30:100924

    Article  Google Scholar 

  138. Heydarpour F, Abbasi E, Ebadi MJ, Karbassi SM (2020) Solving an optimal control problem of cancer treatment by artificial neural networks. Int J Interact Multimed Art Intell 6(4):18. https://doi.org/10.9781/ijimai.2020.11.011

    Article  Google Scholar 

  139. Ghaffari R, Salehi A, Salehi N (2015) Comparison of second molar eruption pattern in skeletal class I and class III malocclusions among 8 9 years old children. Biomed Pharmacol J 8S:811–816. https://doi.org/10.13005/bpj/788

    Article  Google Scholar 

  140. Estiri SN, Jalilvand AH, Naderi S, Najafi MH, Fazeli M (2022) A low-cost stochastic computing-based fuzzy filtering for image noise reduction. 2022 IEEE 13th International Green and Sustainable Computing Conference. IGSC 2022:1–6. https://doi.org/10.1109/IGSC55832.2022.9969358

    Article  Google Scholar 

  141. Esfahani MM, Sadati H (2021) FNIRS signals classification with ensemble learning and adaptive neuro-fuzzy inference system. Proceedings - 2021 7th International Conference on Signal Processing and Intelligent Systems, ICSPIS 2021, 1–5. https://doi.org/10.1109/ICSPIS54653.2021.9729388

  142. Wei J, Chammam A, Feng J, Alshammari A, Tehranian K, Innab N, Deebani W, Shutaywi M (2024) Power system monitoring for electrical disturbances in wide network using machine learning. Sustain Comput Inform Syst 42:100959. https://doi.org/10.1016/j.suscom.2024.100959

    Article  Google Scholar 

  143. Rodrigues AP, Fernandes R, Shetty A, Lakshmanna K, Shafi RM (2022) Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques. Comput Intell Neurosci. https://doi.org/10.1155/2022/5211949

    Article  Google Scholar 

  144. Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed 127:248–257

    Article  Google Scholar 

  145. Roh S, Lee Y-S (2023) Developing culturally tailored mobile web app education to promote breast cancer screening: knowledge, barriers, and needs among American Indian women. J Cancer Educ 2023:1224–123

    Article  Google Scholar 

  146. Demir, F. (2021) Deepbreastnet: a novel and robust approach for automated breast cancer detection from histopathological images. Biocybern Biomed Eng 41

  147. Jabeen K et al (2022) Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 22:807

    Article  Google Scholar 

  148. Hirschman J, Whitman S, Ansell D (2007) The black: white disparity in breast cancer mortality: the example of Chicago. Cancer Causes Contr 18:323–33

    Article  Google Scholar 

  149. Nagore R, Jain PK, Gamad RS, Priyadarshi R (2023) Design of low-power high-efficient single-tail comparator using 180 nm CMOS Technology BT - Microelectronics, Communication Systems, Machine Learning and Internet of Things (V. Nath & J. K. Mandal (eds.); pp 155–163). Springer Nature Singapore

  150. Desai M, Shah M (2021) An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (mlp) and convolutional neural network (cnn). Clin eHealth 4

  151. Mokni R, Haoues M (2022) Cadnet157 model: fine-tuned resnet152 model for breast cancer diagnosis from mammography images. Neural Comput Appl 2022:22023–22046

    Article  Google Scholar 

  152. Swiderski B, Gielata L, Olszewski P, Osowski S, Kołodziej M (2021) Deep neural system for supporting tumor recognition of mammograms using modified gan. Expert Syst Appl 164:113968

    Article  Google Scholar 

  153. Dhal KG, Ray S, Das A et al (2019) A Survey on nature-inspired optimization algorithms and their application in image enhancement domain. Arch Computat Methods Eng 26:1607–1638. https://doi.org/10.1007/s11831-018-9289-9

    Article  MathSciNet  Google Scholar 

  154. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A (2020) Dataset of breast ultrasound images. Data Br. 28:104863

    Article  Google Scholar 

  155. Singh, A. et al. (2021) Ediapredict: an ensemble-based framework for diabetes prediction. ACM Trans Multimed Comput Commun Appl 17

  156. Ellington TD et al (2023) Trends in breast cancer mortality by race/ethnicity, age, and us census region, United States–1999–2020. Cancer 129:32–38

    Article  Google Scholar 

  157. SannasiChakravarthy S, Bharanidharan N, Rajaguru H (2022) Multi-deep CNN based experimentations for early diagnosis of breast cancer. IETE J Res 2022:7326–7341

    Google Scholar 

  158. Madabhushi A, Lee G (2016) Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal 33:170–175. https://doi.org/10.1016/j.media.2016.06.037

    Article  Google Scholar 

  159. Sasmal B, Das A, Dhal KG, Ray S (2023) Aquila-particle swarm based cooperative search optimizer with superpixel techniques for epithelial layer segmentation. Appl Soft Comput 149:110947. https://doi.org/10.1016/j.asoc.2023.110947

    Article  Google Scholar 

  160. Dhal KG, Das A, Sasmal B, Ray S, Rai R, Garai A (2023) Fuzzy C-Means for image segmentation: challenges and solutions. Multimed Tools Appl 83(9):27935–27971. https://doi.org/10.1007/s11042-023-16569-2

    Article  Google Scholar 

  161. Dhal KG, Ray S, Barik S, Das A (2023) Illumination-free clustering using improved slime mould algorithm for acute lymphoblastic leukemia image segmentation. J Bionic Eng 20(6):2916–2934. https://doi.org/10.1007/s42235-023-00392-4

    Article  Google Scholar 

  162. Dhal KG, Rai R, Das A, Ray S, Ghosal D, Kanjilal R (2023) Chaotic fitness-dependent quasi-reflected Aquila optimizer for superpixel based white blood cell segmentation. Neural Comput Appl 35(21):15315–15332. https://doi.org/10.1007/s00521-023-08486-0

    Article  Google Scholar 

  163. Sasmal B, Dhal KG (2023) A survey on the utilization of Superpixel image for clustering based image segmentation. Multimed Tools Appl 82(23):35493–35555. https://doi.org/10.1007/s11042-023-14861-9

    Article  Google Scholar 

  164. Ray S, Dhal KG, Kumar Naskar P (2022). Particle swarm optimizer based epithelial layer segmentation in CIElab color space. 7th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2022 - Proceedings, 7, 331–336. https://doi.org/10.1109/ICRAIE56454.2022.10054261

  165. Dhal KG, Das A, Ray S, Rai R, Ghosh TK (2023) Archimedes optimizer-based fast and robust fuzzy clustering for noisy image segmentation. Journal of Supercomputing 79(4):3691–3730. https://doi.org/10.1007/s11227-022-04769-w

    Article  Google Scholar 

  166. Dhal KG, Das A, Ray S, Gálvez J (2021) Randomly attracted rough firefly algorithm for histogram based fuzzy image clustering. Knowl-Based Syst 216:106814. https://doi.org/10.1016/j.knosys.2021.106814

    Article  Google Scholar 

  167. Iqbal S, Qureshi AN, Aurangzeb K, Alhussein M, Haider SI, Rida I (2023) AMIAC: adaptive medical image analyzes and classification, a robust self-learning framework. Neural Comput Appl. https://doi.org/10.1007/s00521-023-09209-1

    Article  Google Scholar 

  168. Das A, Dhal KG, Ray S, Gálvez J (2022) Histogram-based fast and robust image clustering using stochastic fractal search and morphological reconstruction. Neural Comput Appl 34(6):4531–4554. https://doi.org/10.1007/s00521-021-06610-6

    Article  Google Scholar 

  169. Ray S, Das A, Dhal KG, Gálvez J, Naskar PK (2022) Whale optimizer-based clustering for breast histopathology image segmentation. Int J Swarm Intell Res 13(1):1–29. https://doi.org/10.4018/IJSIR.302611

    Article  Google Scholar 

  170. Ray, S., Dhal, K. G., & Naskar, P. K. (2023). Superpixel image clustering using particle swarm optimizer for nucleus segmentation. In M. Thakur, S. Agnihotri, B. S. Rajpurohit, M. Pant, K. Deep, & A. K. Nagar (Eds.), Lecture Notes in Networks and Systems (Vol. 547, pp 445–457). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6525-8_34

  171. Dhal KG, Rai R, Das A, Ghosh TK (2022). Hybridization of Sine-cosine algorithm with k-means for pathology image clustering. In: A. A. Sk, T. Turki, T. K. Ghosh, S. Joardar, & S. Barman (Eds.), Communications in Computer and Information Science: Vol. 1695 CCIS (pp. 76–86). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22485-0_8

  172. Podda AS et al (2022) Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images. J Comput Sci 63:101816

    Article  Google Scholar 

  173. Nicolas E, Khalifa N, Laporte C, Bouhroum S, Kirova Y (2021) Safety margins for the delineation of the left anterior descending artery in patients treated for breast cancer. Int J Radiat Oncol Biol Phys 109:267–272

    Article  Google Scholar 

  174. Shen T, Wang J, Gou C, Wang FY (2020) Hierarchical fused model with deep learning and type-2 fuzzy learning for breast cancer diagnosis. IEEE Trans Fuzzy Syst 28:3204–3218

    Article  Google Scholar 

  175. Hodkinson A et al (2022) Associations of physician burnout with career engagement and quality of patient care: systematic review and meta-analysis. BMJ 378:e070442

    Article  Google Scholar 

  176. Simsek A et al. (2021) Factors affecting the accuracy of 18 f-FDG PET/CT in detecting additional tumor foci in breast cancer. Arch Hell Med/Arheia Ellenikes Iatrikes 38

  177. Kooi T et al (2016) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312

    Article  Google Scholar 

  178. Charbonnier J et al (2017) Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 36:52–60

    Article  Google Scholar 

  179. Bejnordi BE, Veta M, Diest PJ (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:2199–2210

    Article  Google Scholar 

  180. Karimi D, Samei G, Kesch C, Nir G, Salcudean SE (2018) Prostate segmentation in mri using a convolutional neural network architecture and training strategy based on statistical shape models. Int J Comput Assist Radiol Surg 13:1211–1219

    Article  Google Scholar 

  181. Esteva A. et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Proc Nat 542

  182. Anwar SM et al (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42:226

    Article  Google Scholar 

  183. Kennard K et al (2022) Outcomes of abbreviated MRI (ab-MRI) for women of any breast cancer risk and breast density in a community academic setting. Ann Surg Oncol 29:6215–622

    Article  Google Scholar 

  184. Havaei M, Davy A, Warde-Farley D (2017) Brain tumor segmentation with deep neural networks. Med Image Anal. 35:18–31

    Article  Google Scholar 

  185. Kamnitsas K et al (2017) Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. Proc Med Image Anal 36:61–78

    Article  Google Scholar 

  186. Priyadarshi R (2024) Exploring machine learning solutions for overcoming challenges in IoT-based wireless sensor network routing: a comprehensive review. Wireless Netw. https://doi.org/10.1007/s11276-024-03697-2

    Article  Google Scholar 

  187. Kooi T et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312

    Article  Google Scholar 

  188. Cheng H, Jiang X, Sun Y, Wang J (2001) Color image segmentation: advances and prospects. Pattern Recogn. 34:2259–2281

    Article  Google Scholar 

  189. Pan Z, Lu J (2007) A bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng. 9:32–38

    Article  Google Scholar 

  190. Kallenberg M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. Proc IEEE Trans Med Imaging 35:1322–1331

    Article  Google Scholar 

  191. Pereira S et al (2018) Enhancing interpretability of automatically extracted machine learning features: application to a rbm-random forest system on brain lesion segmentation. Med Image Anal. 44:228–244

    Article  Google Scholar 

  192. Singh MP, Priyadarshi R, Garg P (2019) Design of SIW-fed broadband microstrip patch antenna for E-band wireless communication. In A. K. Luhach, K. B. G. Hawari, I. C. Mihai, P.-A. Hsiung, & R. B. Mishra (Eds.), Smart Computational Strategies: Theoretical and Practical Aspects (pp. 185–193). Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_16

  193. Porwal P et al (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. MDPI Data 3:25

    Google Scholar 

  194. Setio AAA, Jacobs C, Gelderblom J, Ginneken B (2015) Automatic detection of large pulmonary solid nodules in thoracic CT images. Med Phys. 42:5642–5653

    Article  Google Scholar 

  195. Ginneken B, Stegmann M, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 10:19–40

    Article  Google Scholar 

  196. Ye M, Giannarou S, Meining A, Yang G-Z (2015) Online tracking and retargeting with applications to optical biopsy in gastrointestinal endoscopic examinations. Med Image Anal. 30:144–157

    Article  Google Scholar 

  197. Qiu Y, Ma L, Priyadarshi R (2024) Deep learning challenges and prospects in wireless sensor network deployment. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10079-6

    Article  Google Scholar 

  198. Li T et al (2023) A systematic review of the impact of the covid-19 pandemic on breast cancer screening and diagnosis. Breast 67:78–88

    Article  Google Scholar 

  199. Yu L, Chen H, Dou Q, Qin J, Heng P-A (2016) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 36:994–1004

    Article  Google Scholar 

  200. Oktay O et al (2018) Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37:384–395

    Article  Google Scholar 

  201. Alex V, Vaidhya K, Thirunavukkarasu S, Kesavadas C, Krishnamurthia G (2017) Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation. J Med Imaging. 4:041311

    Article  Google Scholar 

  202. Singh MP, Priyadarshi R, Sharma P, Thakur A (2017). Small size rectangular microstrip patch antenna with a cross slot using SIW. 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua, 446–449. https://doi.org/10.1109/ICIIP.2017.8313757

  203. Avendi MR, Kheradvar A, Jafarkhani H (2016) Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn Reson Med. 78:2439–2448

    Article  Google Scholar 

  204. Azizi S et al (2016) Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Surgery 11:947–95

    Google Scholar 

  205. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6:60

    Article  Google Scholar 

  206. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    MathSciNet  Google Scholar 

  207. Priyadarshi R, Singh MP, Tripathi H, Sharma P (2017) Design and performance analysis of vivaldi antenna at very high frequency. 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua, 450–453. https://doi.org/10.1109/ICIIP.2017.8313758

  208. Thakur RS, Yadav RN, Gupta L (2019) State-of-art analysis of image denoising methods using convolutional neural networks. IET Image Proc 13:2367–2380

    Article  Google Scholar 

  209. Talebi H, Zhu X, Milanfar P (2013) How to saif-ly boost denoising performance. IEEE Trans Image Process 22:1470–1485

    Article  MathSciNet  Google Scholar 

  210. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

    Article  Google Scholar 

  211. Priyadarshi R, Vikram R (2023) A triangle-based localization scheme in wireless multimedia sensor network. Wireless Pers Commun 133(1):525–546. https://doi.org/10.1007/s11277-023-10777-7

    Article  Google Scholar 

  212. Song Y, Zhu Y, Du X (2019) Dynamic residual dense network for image denoising. Sensors 19:3809

    Article  Google Scholar 

  213. Priyadarshi R (2024) Energy-efficient routing in wireless sensor networks: A meta-heuristic and artificial intelligence-based approach: A comprehensive review. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-023-10039-6

    Article  MathSciNet  Google Scholar 

  214. Wang F, Henninen TR, Keller D, Erni R (2020) Noise2atom: unsupervised denoising for scanning transmission electron microscopy images. Appl Microsc 50:23

    Article  Google Scholar 

  215. Ahmad AJ, Hassan SD, Priyadarshi R, Nath V (2023) Analysis on image compression for multimedia communication using hybrid of DWT and DCT. In V. Nath & J. K. Mandal (Eds.), Lecture Notes in Electrical Engineering (Vol. 887, pp. 667–672). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_54

  216. Xiang L et al (2017) Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose PET/MRI. Neurocomputing 267:406–416

    Article  Google Scholar 

  217. Weigert M et al (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15:1091–1097

    Article  Google Scholar 

  218. Ulaner GA (2019) PET/CT for patients with breast cancer: where is the clinical impact? Am J Roentgenol 213:254–265

    Article  Google Scholar 

  219. Hassan NM, Hamad S, Mahar K (2022) Mammogram breast cancer cad systems for mass detection and classification: a review. Multimed Tools Appl 81:20043–20075

    Article  Google Scholar 

  220. Sateesh VA, Dutta I, Priyadarshi R, Nath V (2021) Fractional frequency reuse scheme for noise-limited cellular networks BT - Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems (V. Nath & J. K. Mandal (eds.); pp. 995–1004). Springer Singapore

  221. Randheer Soni SK, Kumar S, Priyadarshi R (2020) Energy-aware clustering in wireless sensor networks BT - Nanoelectronics, Circuits and communication systems (V. Nath & J. K. Mandal (eds.); pp. 453–461). Springer Singapore

  222. Jiang J et al (2022) Breast cancer detection and classification in mammogram using a three-stage deep learning framework based on paa algorithm. Artif Intell Med 134:102419

    Article  Google Scholar 

  223. Saha A et al (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 dce-MRI features. Br J Cancer 119:508–516

    Article  Google Scholar 

  224. Nagalakshmi T (2022) Breast cancer semantic segmentation for accurate breast cancer detection with an ensemble deep neural network. Neural Process Lett 54:5185–5198

    Article  Google Scholar 

  225. Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance analysis of diamond search algorithm over full search algorithm. Microsyst Technol 24(6):2529–2537. https://doi.org/10.1007/s00542-017-3625-0

    Article  Google Scholar 

  226. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of wireless sensor network. Wireless Pers Commun 117(2):825–841. https://doi.org/10.1007/s11277-020-07898-8

    Article  Google Scholar 

  227. Kumar RR, Kumar A, Srivastava S (2020) Anisotropic diffusion based unsharp masking and crispening for denoising and enhancement of MRI images. 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, pp 1–6. https://doi.org/10.1109/ICEFEET49149.2020.9186966

  228. Evrimler S, Algin O (2021) CT and MR enterography and enteroclysis BT - Medical imaging contrast agents: a clinical manual. in (eds. Erturk, S. M., Ros, P. R., Ichikawa, T. & Saylisoy, S.) (Springer, 2021). https://doi.org/10.1007/978-3-030-79256-5_14.

  229. Singh S, Kumar R (2022) Breast cancer detection from histopathology images with deep inception and residual blocks. Multimed Tools Appl 81:5849–5865

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

In this study, R.R.K. and R.P. all contributed significantly to the research efforts. R.R.K. played a key role in the execution of the experiments, while R.P. contributed to various aspects of the research process. The collaborative efforts of R.R.K. and R.P. are evident in the combined writing and development of the paper.

Corresponding author

Correspondence to Ravi Ranjan Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.R., Priyadarshi, R. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19313-6

Keywords

Navigation