Skip to main content
Log in

Kinetics of Formation, Metallurgical and Tribological Properties of Iron Boride Surface Layer on Steel ASTM A572

  • THERMOCHEMICAL TREATMENT AND COATINGS
  • Published:
Metal Science and Heat Treatment Aims and scope

The structure, cohesion and tribological properties of steel ASTM A572 (the Russian counterpart is St6sp) are studied after pack boronizing in a powder mixture at 1123 – 1173 K for 2 – 8 h. The microstructure of the boride layers is studied with the use of optical and scanning electron microscopes. The cohesion of the diboride layers to the substrate from steel ASTM A572 is assessed. The friction coefficient and the wear resistance of the steel are determined by testing by the pin-on-disk scheme. The boronized surface layers are shown to consist of iron borides and to have a tooth morphology and a thickness of 37.40 ± 6.5 – 238 ± 36.4 μm. The kinetics of the boronizing process is studied by an approach based on determination of the mean diffusivity of boron in Fe2B using the activation energy for a constant incubation period. The results of the calculation are checked experimentally for two additional boronizing conditions at 1123 and 1273 K for 10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. M. Kulka, “Trends in thermochemical techniques of boriding,” in: Current Trends in Boriding, Engineering Materials, Springer, Cham, Switzerland (2019), pp. 17 – 98.

  2. Y. Kayali and S. Taktak, “Characterization and Rockwell-C adhesion properties of chromium-based borided steels,” J. Adhes. Sci. Technol., 29(19), 2065 – 20752 (2015).

    Article  CAS  Google Scholar 

  3. E. A. Smol’nikov and L. M. Sarmanova, “Study of the possibility of liquid boriding of high-speed steels,” Met. Sci. Heat Treat., 24(11), 785 – 788 (1982).

  4. I. Gunes, S. Ulker, and S. Taktak, “Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures,” Prot. Met. Phys. Chem. Surf., 49, 567 – 573 (2013).

    Article  CAS  Google Scholar 

  5. L. S. Lyakhovich, F. V. Dolmanov, and S. A. Isakov, “Boriding of steels in gaseous media,” Met. Sci. Heat Treat., 24(4), 260 – 263 (1982).

    Article  Google Scholar 

  6. V. Jain and G. Sundararajan, “Influence of the pack thickness of the boronizing mixture on the boriding of steel,” Surf. Coat. Technol., 149(1), 21 – 26 (2002).

    Article  CAS  Google Scholar 

  7. I. Campos, J. Oseguera, U. Figueroa et al., “Kinetic study of boron diffusion in the paste-boriding process,” Mater. Sci. Eng. A, 352(1 – 2), 261 – 265 (2003).

    Article  Google Scholar 

  8. M. Kulka, N. Makuch, A. Petek, L. Maldzinski, “Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere,” J. Solid State Chem., 199, 196 – 203 (2013).

    Article  CAS  Google Scholar 

  9. M. Keddam and M. Kulka, “Mean diffusion coefficient method in studying armco iron boriding kinetics,” Met. Sci. Heat Treat., 62(5 – 6), 326 – 330 (2020).

    Article  CAS  Google Scholar 

  10. C. I. Villa Velázquez-Mendoza, J. L. Rodríguez-Mendoza, V. Ibarra-Galván, et al., “Effect of substrate roughness, time and temperature on the processing of iron boride coating: experimental and statistical approaches,” Int. J. Surf. Sci. Eng., 8(1), 71 – 91 (2014).

  11. Y. Kayali and R. Kara, “Investigation of wear behavior and diffusion kinetic values of boronized Hardox-450 steel,” Prot. Met. Phys. Chem. Surf., 57, 1025 – 1033 (2021).

    Article  Google Scholar 

  12. I. Campos, M. Islas, E. Gonzıles, et al., “Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing,” Surf. Coat. Technol., 201(6), 2717 – 2723 (2006).

  13. M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa, et al., “Characterization and boriding kinetics of AISI T1 steel,” Metall. Res. Technol., 116(1), 1 – 11(2019).

    Article  Google Scholar 

  14. O. Delai, C. Xia, and L. Shiqiang, “Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: experiments and modelling,” J. Mater. Res. Technol., 11, 1272 – 1280 (2021).

    Article  Google Scholar 

  15. M. Keddam and M. Kulka, “Simulation of boriding kinetics of AISI D2 steel using two different approaches,” Met. Sci. Heat Treat., 61(12), 756 – 763 (2020).

    Article  CAS  Google Scholar 

  16. N. Lopez Perrusñuia, M. A. Doñu Ruiz, E. Y. Vargas Oliva, and V. C. Suarez, “Diffusion of hard coatings on ductile cast iron,” MRS Proc., 1481, 105 – 112 (2012).

  17. E. Yalamaç, İ. Türkmen, and Ö. Fırtına, “Characterization and kinetic analysis of iron boride layer formed on the GGG 70 ductile cast iron,” Trans. Indian Inst. Met., 74, 1701 – 1711 (2021).

    Article  Google Scholar 

  18. O. Azouani, M. Keddam, O. Allaoui, and A. Sehisseh, “Kinetic analysis of pack-borided gray cast iron,” Mater. Perform. Charact., 10(1), 226 – 236 (2021).

    CAS  Google Scholar 

  19. N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Proc. Technol., 143 – 144, 481 – 485 (2003).

    Article  Google Scholar 

  20. S. Taktak, “Some mechanical properties of borided AISI H13 and 304 steels,“Mater. Des., 28(6), 1836 – 1843 (2007).

  21. L. G. Yu, X. J. Chen, K. A. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics,” Acta Mater., 53(8), 2361 – 2368 (2005).

    Article  CAS  Google Scholar 

  22. H. Okamoto, “B–Fe (boron-iron),” J. Phase Equil. Diffus., 25, 297 – 298 (2004).

    Article  CAS  Google Scholar 

  23. Y. Ugaste, “On the interstitial phase growth kinetics at diffusional precipitation of metals,” in: Chemical and Thermal Treatment of Metals and Alloys, Belarus Technical Institute Press, Minsk (1977), pp. 40 – 42.

  24. C. Martini, G. Palombarini, and M. Carbucicchio, “Mechanism of thermochemical growth of iron borides on iron,” J. Mater. Sci., 39, 933 – 937 (2004).

    Article  CAS  Google Scholar 

  25. S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Technol., 191(2 – 3), 274 – 285 (2005).

    Article  CAS  Google Scholar 

  26. I. Campos-Silva, E. J. Hernandez-Ramírez, A. Contreras-Hernández, et al., “Pulsed-DC powder-pack boriding: Growth kinetics of boride layers on an AISI 316 L stainless steel and Inconel 718 superalloy,” Surf. Coat. Technol., 421, 127404 (2021).

    Article  CAS  Google Scholar 

  27. G. Kartal, O. L. Eryilmaz, G. Krumdick, et al., “Kinetics of electrochemical boriding of low carbon steel,” Appl. Surf. Sci., 257(15), 6928 – 6934 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 13 – 20, February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Ortiz-Domínguez, M., Cruz-Avilés, A. et al. Kinetics of Formation, Metallurgical and Tribological Properties of Iron Boride Surface Layer on Steel ASTM A572. Met Sci Heat Treat 65, 74–81 (2023). https://doi.org/10.1007/s11041-023-00894-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00894-2

Keywords

Navigation