Skip to main content
Log in

Effect of the Rate and Temperature of Hot Deformation on Strain Resistance of Duplex Stainless Steel

  • THERMAL AND THERMOMECHANICAL TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of the temperature and rate of hot deformation on the structure and strain resistance of duplex stainless steel DSS 2205 is considered. Tests for hot compression of specimens are conducted at a temperature of 1223 – 1473 K and deformation rate 0.01 – 30 sec–1 to a degree of 0.4 and 0.8. Maps of deformation mechanisms are plotted. It is shown that the strain resistance decreases after attaining a maximum value in the flow curve, and the flow stress increases with decrease of the temperature and increase of the rate of the deformation. The activation energy of the hot deformation is shown to vary in accordance with the partitioning of strain between the two phases (ferrite and austenite) in the structure of the steel. The rate and the temperature of the deformation affect the deformability of the duplex steel considerably. Continuous dynamic recrystallization of ferrite is activated strongly in the range of flow stability. The range of flow instability is characterized by weak continuous dynamic recrystallization in the ferrite and discontinuous dynamic recrystallization in the austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. C. M. Garzon and A. P. Tschiptschin, “EBSD texture analyses of a high temperature gas nitride duplex stainless steel,” Mater. Sci. Eng. A, 441(1 – 2), 230 – 238 (2006).

    Article  Google Scholar 

  2. J. M. Cabrera, A. Mateo, L. Lanes, et al., “Hot deformation of duplex stainless steels,” J. Mater. Process. Technol., 143 – 144, 321 – 325 (2003).

    Article  Google Scholar 

  3. A. L. Filho, J. M. D. A. Rollo, R. V. Silva, and G. Martinez, “Alternative process to manufacture austenitic(ferritic stainless steel wires,” Mater. Lett., 59(10), 1192 – 1194 (2005).

    Article  Google Scholar 

  4. E. Evangelista, H. J. McQueen, M. Niewczas, and M. Cabibbo, “Hot workability of 2304 and 2205 duplex stainless steels,” Can. Met. Quart., 43, 39 – 353 (2004).

    Article  Google Scholar 

  5. A. Momeni, S. M. Abbasi, and A. Shokuhfar, “Hot compression behavior of as-cast precipitation-hardening stainless steel,” J. Iron Steel Res. Int., 14, 66 – 70 (2014).

    Article  Google Scholar 

  6. O. A. Zambrano, J. Valdés, Y. Aguilar, et al., “Hot deformation of a Fe – Mn – Al – C steel susceptible of k-carbide precipitation,” Mater. Sci. Eng. A, 689, 269 – 285 (2017).

    Article  CAS  Google Scholar 

  7. Q. A. Gao, H. L. Zhang, H. J. Li, and C. C. Jiang, “Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior,” J. Mater. Sci., 54(11), 8760 – 8777 (2017).

    Article  Google Scholar 

  8. N. D. Ryan and H. J. McQueen, “Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel,” J. Mater. Process. Technol., 21(2), 177 – 199 (1990).

    Article  Google Scholar 

  9. A. I. Rudskoy, A. A. Kononov, S. Yu. Kondrat’ev, and M. A. Matveev, “Texture formation in hot rolling of electrical anisotropic steel,” Met. Sci. Heat Treat., 60(11 – 12), 689 – 694 (2019).

  10. O. Balancin, W. A. M. Hoffmann, and J. J. Jonas, “Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures,” Metall. Mater. Trans. A, 31A, 1353 – 1364 (2000).

    Article  CAS  Google Scholar 

  11. A. Iza-Mendia, A. Pinol-Juez, J. J. Urcola, and I. Gutierrez, “Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions,” Metall. Mater. Trans. A, 29A, 2975 – 2986 (1998).

    Article  CAS  Google Scholar 

  12. Y. Y. Liu, H. T. Yan, X. N.Wang, and M. Yan, “Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101,” Mater. Sci. Eng. A, 575, 41 – 47 (2013).

    Article  CAS  Google Scholar 

  13. G. W. Fan, J. Liu, P. D. Han, and G. J. Qiao, “Hot ductility and microstructure in casted 2205 duplex stainless steels,” Mater. Sci. Eng. A, 515(1 – 2), 108 – 112 (2009).

    Article  Google Scholar 

  14. Y.Wang, Q. L. Pan, Y. F. Song, et al., “Hot deformation and processing maps of X-t50 nickel-based superalloy,” Mater. Des., 51, 154 – 160 (2013).

    Article  CAS  Google Scholar 

  15. Y. H. Liu, Y. Q. Ning, Z. K. Yao et al., “Effect of true strains on processing map for isothermal compression of Ni – 20.0Cr – 2.5Ti – 1.5Nb – 1.0Al Ni-base superalloy,” J. Alloy Compd., 612, 56 – 63 (2014).

    Article  CAS  Google Scholar 

  16. C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys., 15(1), 22 – 32 (1944).

    Article  Google Scholar 

  17. C. M. Sellars andW. J. McG, “Hot workability,” Int. Metal., 17, 1 – 24 (1972).

  18. Y. H. Yang and B. Yan, “The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation,” Mater. Sci. Eng. A, 579, 194 – 201 (2013).

    Article  CAS  Google Scholar 

  19. A. Momeni, K. Dehghani, and M. C. Poletti, “Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures,” Mater. Chem. Phys., 139(2 – 3), 747 – 755 (2013).

    Article  CAS  Google Scholar 

  20. B. Eghbali, A. Abdollah-Zadeh, H. Beladi, and P. D. Hodgson, “Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel,” Mater. Sci. Eng. A, 435 – 436, 499 – 503 (2006).

    Article  Google Scholar 

  21. J. C. Tan and M. J. Tan, “Dynamic continuous recrystallization characteristics in two stage deformation of Mg – 3Al – 1Zn alloy sheet,” Mater. Sci. Eng. A, 339, 124 – 132 (2003).

    Article  Google Scholar 

  22. M. Martins and L. C. Casteletti, “Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure,” Mater. Charact., 55(3), 225 – 233 (2005).

    Article  CAS  Google Scholar 

  23. H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinmaa, “Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu,” Comp. Mater. Sci., 84, 327 – 338 (2014).

    Article  CAS  Google Scholar 

  24. D. G. Cram, X. Y. Fang, H. S. Zurob, et al., “The effect of solute on discontinuous dynamic recrystallization,” Acta Mater., 60(18), 6390 – 6404 (2012).

    Article  CAS  Google Scholar 

  25. P. Zhang, C. Hu, C. G. Ding, et al., “Plastic deformation behavior and processing maps of a Ni-based superalloy,” Mater. Des., 65, 575 – 584 (2015).

    Article  CAS  Google Scholar 

  26. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, et al., “Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242,” Metall. Mater. Trans. A, 5A, 1883 – 1892 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Li.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 3 – 12, February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, J., Li, Q. et al. Effect of the Rate and Temperature of Hot Deformation on Strain Resistance of Duplex Stainless Steel. Met Sci Heat Treat 65, 65–73 (2023). https://doi.org/10.1007/s11041-023-00893-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-023-00893-3

Keywords

Navigation