Skip to main content
Log in

A Study of the Effect of Temperature and Rate of Cooling Under Crystallization on the Structure of Cast Alloy Al – 30 at .% Cu

  • ALUMINUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of metallographic, differential thermal and x-ray phase analysis, light and electron microscopy, and measurement of microhardness are used to study the morphological features of the structure of hypereutectic alloy Al – 30 at.% Cu formed due to cooling of liquid phase at a rate of about 2 and about 104 K/sec after superheating above the liquidus. A comparative study of structural and phase transformations in castings is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The authors gratefully acknowledge the help of V. V. Astaf’ev (IFM UrO RAN) with the metallographic analysis and of L. A. Romanova (FTI UrO RAN) with the differential thermal analysis.

  2. Here and below in the paper the content of elements is given in atomic percent.

References

  1. A. I. Zaitsev, R. Yu. Shimko, N. A. Aratyunyan, and S. F. Dunaev, “Astudy of the thermodynamic properties and association in molten Al – Cu and of their relations with the conditions of formation of quasicrystals,” Fiz. Khim., 414(3), 352 – 356 (2007).

    Google Scholar 

  2. V. M. Zalkin, “Some aspects of the theory of eutectic alloys in the light of new experimental data,” Metalloved. Term. Obrab. Met., No. 11, 2 – 7 (1993).

    Google Scholar 

  3. N. P. Lyakishev (ed.), Phase Diagrams of Binary Metallic Systems, Vol. 1 [in Russian], Mashinostroenie, Moscow (1996), 991 p.

  4. L. F. Mondolfo, Structure and Properties of Aluminum Alloys [Russian translation], Metallurgiya, Moscow (1979), 640 p.

  5. V. Ye. Semenenko, A. A. Kasilov, and T. A. Kovalenko, “Influence of the treatment on kinetics of senescence of the natural microcomposite of Al – CuAl2,” J. Kharkiv Univ., Phys. Ser. “Nuclei, Particles, Fields,” Issue 1, 53(991), 90 – 94 (2012).

  6. N. Sammes, “Fuel cell technologies: state and perspectives,” in: Proc. of the NATO Adv. Res. Workshop on Fuel Cell Technologies, Kyiv (2008), 234.

  7. Yu. N. Taran and V. I. Mazur, Structure of Eutectic Melts [in Russian], Metallurgiya, Moscow (1978), 312 p.

    Google Scholar 

  8. I. G. Brodova, P. S. Popel, N. M. Barbin, and N. A. Vatolin, Melts as the Base of Formation of Structure and Properties of Aluminum Alloys [in Russian], UrO RAN, Ekaterinburg (2005), 370 p.

    Google Scholar 

  9. N. A. Vatolin and Z. A. Pastukhov, Diffraction Research of the Structure of High-Temperature Melts [in Russian], Nauka, Moscow (1980), 190 p.

    Google Scholar 

  10. A. S. Roik, A. V. Samsonnikov, V. P. Kazimirov, and V. E. Sokol’skii, “An x-ray diffraction study of the structure of melts of the Al – Co system,” Zh. Strukt. Khim., 47(3), 171 – 176 (2006).

    Google Scholar 

  11. V. I. Lad’yanov, S. G. Men’shikova, A. L. Bel’tyukov, and V. V. Maslov, “Effect of the temperature and time of isothermal hold on the viscosity and processes of crystallization of Al – Y melts near the eutectic composition,” Izv. Ross. Akad. Nauk, Ser. Fiz., 74(8), 1126 – 1128 (2010).

    Google Scholar 

  12. S. G. Men’shikova, A. L. Bel’tyukov, and V. I. Lad’yanov, “About the special features of viscosity of Al70Cu30 and Al65Cu35 melts,” Vetsn. Kazan. Tekhnol. Inst., 17(23), 140 – 143 (2014).

    Google Scholar 

  13. N. Yu. Konstantinova, P. S. Popel, and D. A. Yagodin, “The kinematic viscosity of liquid copper-aluminum alloys,” Teplofiz. Vys. Temp., 47(3), 354 – 359 (2009).

    Google Scholar 

  14. D. K. Lysakov and O. A. Chikova, “The viscosity of liquid Al – Cu alloys,” Rasplavy, No. 4, 31 – 36 (2007).

  15. A. L. Bel’tyukov and V. I. Lad’yanov, “Automatized unit for determining the kinematic viscosity of metallic melts,” Pribory Tekh. Eksper., No. 2, 155 – 161 (2008).

  16. E. G. Shvidkovskii, Some Aspects of the Viscosity of Molten Metals [in Russian], Gostekhizdat, Moscow (1955), 208 p.

    Google Scholar 

  17. S. Mudry, I. Shtablavyi, and I. Shcherba, “Liquid eutectic alloys as cluster solutions,” Mater. Sci. Eng., 34(1), 14 – 18 (2008).

    Google Scholar 

  18. J. Brillo, A. Bytchkov, I. Egry, et al., “Local structure in liquid binary Al – Cu and Al – Ni alloys,” J. Non-Cryst. Solids, 352, 4008 – 4012 (2006).

    Article  Google Scholar 

  19. B. Xiufang, P. Xuemin, Q. Xubo, and J. Minhua, “Mediumrange order clusters in metal melts,” Sci. China (Ser. E), 45(2), 113 – 119 (2002).

    Google Scholar 

  20. I. G. Brodova, P. S. Popel, and G. I. Eskin, Liquid Metal Processing: Application to Aluminum Alloy Production, Taylor and Francis, New York (2002), 269 p.

    Google Scholar 

Download references

The study has been performed with financial support of the Russian Foundation for Basic Research within Scientific Project No. 15-02-06288 a and the Program for Integration Fundamental Research of the Ural Branch of the Russian Academy of Sciences within State Assignment No. 01201463331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Men’shikova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 3 – 8, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shikova, S.G., Brodova, I.G., Shirinkina, I.G. et al. A Study of the Effect of Temperature and Rate of Cooling Under Crystallization on the Structure of Cast Alloy Al – 30 at .% Cu. Met Sci Heat Treat 59, 133–138 (2017). https://doi.org/10.1007/s11041-017-0116-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-017-0116-y

Key words

Navigation