Skip to main content
Log in

Effect of Casting Method on Phase Composition of Heat-Resistant Austenitic Alloys Based on the Fe – 25% Cr – 35% Ni System

  • HEAT-RESISTANT ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

Methods of optical and electron microscopy and x-ray spectrum microanalysis are used to study the microstructure and the phase composition of alloy HP40NbTi produced by different casting methods. The effect of melt cooling rate within 1 – 1000 K/sec in the process of crystallization on chemical heterogeneity and quantitative proportion of chromium carbide to niobium carbide in the cast structure is investigated. It is shown that chemical heterogeneity of phases in the alloy is the highest when melt is cooled at a rate of 100 – 300 K/sec, which corresponds to crystallization conditions during welding and surfacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Here are subsequently through the text element content, apart from stipulated cases, is given in weight fractions expressed as a %.

References

  1. M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng., 11(2), 47 – 52 (2011).

    CAS  Google Scholar 

  2. S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Des., 34, 65 – 73 (2012).

    Article  CAS  Google Scholar 

  3. H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed, and N. M. Abbas, “Effect of materials selection and design on the performance of an engineering product — An example from petrochemical industry,” Mater. Des., 28(2), 686 – 703 (2007).

    Article  CAS  Google Scholar 

  4. B. Piekarski and J. Kubicki, “Creep-resistant austenitic cast steel,” Arch. Foundry Eng., 8(2), 115 – 120 (2008).

    CAS  Google Scholar 

  5. L. H. De Almeida, A. F. Ribeiro, and I. Le May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Char., 49(3), 219 – 229 (2003).

    Article  Google Scholar 

  6. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003).

    Article  CAS  Google Scholar 

  7. A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Features of structural changes within heat-resistant alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb at operating temperatures. Communication 1. Cast condition,” Nauch. Techn. Vedom. SPbGTU, No. 1(142), 155 – 163 (2012).

  8. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003).

    Article  CAS  Google Scholar 

  9. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat., 55(9 – 10), 517 – 525 (2014).

  10. J. Guo, C. Cheng, H. Li, et al., “Microstructural analysis of Cr35Ni45Nb heat-resistant steel after a five-year service in pyrolysis furnace,” Eng. Fail. Anal., 79, 625 – 633 (2017).

    Article  CAS  Google Scholar 

  11. A. S. Oryshchenko, S. Yu. Kondrat’ev, and G. P. Anastasiadi, “Features of structural changes within heat-resistant alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb at operating temperatures. Communication 2. Effect of high-temperature holding,” Nauch. Techn. Vedom. SPbGTU, No. 1-1(147), 217 – 228 (2012).

  12. A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1 – 2), 3 – 8 (2014).

  13. A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3 – 4), 124 – 130 (2014).

  14. A. Alvino, D. Lega, F. Giacobbe, et al., “Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions,” Eng. Fail. Anal., 17(7 – 8), 1526 – 1541 (2010).

  15. A. I. Rudskoi, G. P. Anastasiadi, A. S. Oryshchenko, et al., “Features of structural changes in heat-resistant alloy 0.45C – 26Cr – 2Si – 2Nb at operating temperatures. Communication. Mechanism and amount of phase transformations,” Nauch.- Tekhn. Ved. SPbGPU, No. 3-2(154), 143 – 150 (2012).

  16. M. P. Dewar and A. P. Gerlich, “Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels containing nitrogen,” Metall. Mater. Trans. A, 44(2), 627 – 639 (2013).

    Article  CAS  Google Scholar 

  17. A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, et al., “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C – 26Cr – 33Ni – 2Si – 2Nb superalloy,” Phys. Met. Metall., 115(1), 1 – 11 (2014).

    Article  Google Scholar 

  18. S. Y. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, and A. V. Ptashnik, “Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure,” Metall. Mater. Trans. A, 48(1), 482 – 492 (2017).

  19. S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7 – 8), 402 – 409 (2015).

  20. M. Behúlová, M. Lipták, P. Grga, et al., “Comparison of microstructures developed during solidification of undercooled tool steel in levitation and on a substrate,” J. Phys.: Conf. Ser., 144, Art. 012099 (2009).

  21. P.-F. Paradis, T. Ishikawa, Y. Watanabe, and J. Okada, “Hybrid processing combining electrostatic levitation and laser heating: Application to terrestrial analogues of asteroid materials,” Adv. Opt. Technol., 2011, Art. 454829 (2011).

  22. G P. Anastasiadi, Chemical Microinhomogeneity Formation in Cast Alloys [in Russian], Politekhnika, St. Petersburg (1992)

    Google Scholar 

  23. L. Shen, J. Gong and X. Qin, “Experimental investigation and numerical simulation of carburization layer evolution of Cr25Ni35Nb and Cr35Ni45Nb steel,” Rev. Adv. Mater. Sci., 33, 142 – 147 (2013).

    CAS  Google Scholar 

  24. S. J. Rothman, L. J. Nowicki, and G. E. Murch, “Self-diffusion in austenitic Fe – Cr – Ni alloys,” J. Phys. F: Metal Phys., 10(3), 383 – 398 (1980).

    Article  CAS  Google Scholar 

  25. G. P. Anastasiadi, R. V. Kolchina, and L. N. Smirnova, “Effect of cooling rate and heat treatment on the chemical micro-inhomogeneity of steel 09Kh16N4BL,” Met. Sci. Heat Treat., 27(9), 678 – 680 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kondrat’ev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 3 – 9, April, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y. Effect of Casting Method on Phase Composition of Heat-Resistant Austenitic Alloys Based on the Fe – 25% Cr – 35% Ni System. Met Sci Heat Treat 64, 191–197 (2022). https://doi.org/10.1007/s11041-022-00783-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00783-0

Keywords

Navigation