Skip to main content
Log in

Effect of Boron Microadditives on the Anisotropy of Mechanical Properties of Flat Preforms from Titanium Alloys

  • Published:
Metal Science and Heat Treatment Aims and scope

The properties of deformed titanium pseudo-alpha-alloys of type PT3V with boron additives are investigated. It is shown that boron produces a positive action on the toughness and ductility of the alloys. The anisotropy of the impact toughness of the alloys is lowered due to a considerable decrease in the size of the colonies of α + β phases in the structure. Determination of the crystallographic orientation of the α-phase plates and of the metallographic orientation of the β-phase layers in flat preforms of titanium alloys has made it possible to index the habit planes between the α- and β-phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of elements is given in weight percent

References

  1. I. V. Polin and V. M. Maksimov, “Special features of boron behavior in crystallization of ingots of titanium alloy,” in: Proc. 3rd Int. Conf. on Titanium, Vol. 1 [in Russian], VILS, Moscow (1976), pp. 119 – 121.

    Google Scholar 

  2. E. V. Nesterova, V. V. Rybin, and V. V. Obukhovskii, “Special features of plastic structure of low-alloy pseudo-alpha-alloys of titanium,” Fiz. Met. Metalloved., 48(3), 563 – 574 (1979).

    Google Scholar 

  3. V. A. Likhachev, Yu. D. Khesin, B. B. Chechulin, et al., “About the nature of the effect of boron on the mechanism of plastic deformation and fracture of α-alloys of titanium,” in: Aspects of the Physical Metallurgy of Steel and Titanium Alloys [in Russian], Perm University, Perm (1978), pp. 129 – 134.

    Google Scholar 

  4. V. A. Likhachev, Yu. D. Khesin, and O. S. Belova, “Effect of boron on the mechanism of plastic deformation and fracture of α-alloys of Ti,” Fiz. Met. Metalloved., 47(4), 834 – 839 (1979).

    Google Scholar 

  5. N. P. Lyakishev, Yu. A. Pliner, S. I. Lappo, et al., Boron-Containing Steels and Alloys [in Russian], Metallurgiya, Moscow (1986), 250 p.

    Google Scholar 

  6. S. B. Maslenkov, Refractory Steels and Alloys, A Reference Book [in Russian], Metallurgiya, Moscow (1983), 155 p.

    Google Scholar 

  7. K. A. Lanskaya, High-Chromium Steels [in Russia], Metallurgiya, Moscow (1976), 184 p.

    Google Scholar 

  8. S. Z. Bokshtein, S. S. Ginzburg, M. A. Gubareva, et al., Structural and Refractory Materials for Advanced Engineering [in Russian], Nauka, Moscow (1978), 115 p.

    Google Scholar 

  9. M. A. Skotnikova, “Electron microscope studies of the effect of boron on the structure and properties of alloys,” in: Studies of the Structure and Properties of Metals and Alloys, A Digest [in Russian], Sudostroenie, Leningrad (1978), pp. 6 – 12.

    Google Scholar 

  10. H. Inouye and S. A. David, “Segregation and influence of boron on the impact toughness of Ti – 6Al – 2Nb – 1Ta – 0.8 Mo welds and castings,” Metall. Trans., 15A(7), 1505 (1984).

    Article  Google Scholar 

  11. M. A. Skotnikova, V. A. Pushkarev, A. S. Igoshin, and V. P. Valuev, “A study of structural texturing of titanium alloys of lamellar type in the bulk of flat preforms,” Zavod. Lab., No. 3, 32 – 35 (1990).

  12. M. A. Skotnikova, “Study of structural and phase transformations and properties as a method for improving the process of production and heat treatment of deformed semiproducts from titanium alloys,” in: Second Int. Conf. and Exhib. on Marine Intellectual Technologies MORINTEKh-96, Abst. Rep. [in Russian], St. Petersburg (1997), Vol. 4, pp. 251 – 255.

  13. M. A. Skotnikova, V. A. Pushkarev, A. S. Kudryavtsev, and G. V. Medvedeva, “A study of micromechanisms of fracture of structurally and crystallographically textured preforms from titanium (α + β)-alloys,” in: Electron Microscopy and Strength of Materials, Coll. Works [in Russian], Inst. Probl. Metalloved., Kiev (1989), pp. 142 – 148.

    Google Scholar 

  14. M. A. Skotnikova, “Microstructural stresses due to thermal anisotropy in titanium preforms,” Instrument (St. Petersburg), No. 5, 26 (1996).

  15. R. M. Gabidullin, B. A. Kolachev, and A. A. Kolpachev, “Metal-vacancies phase diagram,” Izv. Vysh. Uchebn. Zaved. Tsvetn. Met., 4, 87 – 91 (1976).

    Google Scholar 

  16. M. A. Skotnikova, A. G. Yaroshenko, and N. G. Kharchenko, “Features of heat treatment of titanium-base alloy PT-3V microalloyed with boron,” in: Abst. Rep., Meeting of Metal Scientists of Russia [in Russian], PDNTP, Penza (1993), pp. 107 – 108.

    Google Scholar 

  17. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970), 375 p.

    Google Scholar 

  18. K. S. Chernyavskii, Stereology in Metals Science [in Russian], Metallurgiya, Moscow (1977), 280 p.

    Google Scholar 

  19. M. A. Shtremel, A. P. Gruzdov, and S. S. Khayurov, “Determination of crystal habit planes from the statistics of observations on one lap,” Zavod. Lab., No. 8, 941 – 945 (1972).

    Google Scholar 

  20. C. Hammond and P. M. Kelly, “The crystallography of titanium alloy martensites,” Acta Metall., 17(7), 869 – 882 (1969).

    Article  Google Scholar 

  21. D. A. Mortimer, “The effect of boron on the grain boundary energies of gamma-iron,” Grain Bound. Inst. Met. Spring Resident. Conf., Ser. 3, No. 5, 25 – 30 (1976).

  22. G. V. Murzaeva and R. M. Lerinman, “Electron-microscope study of decomposition of metastable β-phase in titanium alloy TS6,” Fiz. Met. Metalloved., 29(4), 813 – 817 (1970).

    Google Scholar 

  23. A. M. Parshin, S. S. Ushkov, and M. A. Skotnikova, “Decomposition diagram and heat-treatment schedule of a α-alloy of titanium,” in: 8th World Conf. “Titanium 95,” Birmingham, UK (1996), pp. 2515 – 2522.

  24. S. Watanabe, H. Ohtani, and T. Kunitake, “The influence of hotrolling and heat treatments on the distribution of boron in steel,” J. Iron Steel Inst. Jpn., 62(14), 1842 – 1850 (1976).

    Google Scholar 

  25. N. V. Ageev (ed.), Structure and Properties of Refractory MetallicMaterials [in Russian], Nauka, Moscow (1973), 348 p.

    Google Scholar 

  26. M. V. Mozharov, L. L. Pyatakova, and M. A. Sirotin, Fiz. Met. Metalloved., 40(1), 215 – 219 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Skotnikova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 29 – 38, October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skotnikova, M.A., Radkevich, M.M., Mironova, E.V. et al. Effect of Boron Microadditives on the Anisotropy of Mechanical Properties of Flat Preforms from Titanium Alloys. Met Sci Heat Treat 55, 540–549 (2014). https://doi.org/10.1007/s11041-014-9667-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-014-9667-3

Key words

Navigation