Skip to main content
Log in

Interfacial Microstructure Evolution and Shear Strength of Titanium Sandwich Structures Fabricated by Brazing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrugated sandwich structure, consisting of a CP Ti (commercially pure titanium) core between two Ti-6Al-4V face sheets, was brazed using pasty Ti-37.5Zr-15Cu-10Ni as filler alloy, at the temperature of 870°C for 5, 10, 20, and 30 min. The effect of brazing time on the microstructure and elemental distribution of the brazed joints was examined by means of SEM, EDS, and XRD analyses. It was found that various intermetallic phases were formed in the brazed joints, following a brazing time of 5 min, and their contents were decreased by the increment of brazing time, while prolonged brazing time resulted in a fine, acicular Widmanstätten microstructure throughout the entire joint. In addition, shear testing was performed in the brazed corrugated specimens in order to indirectly assess the quality of the joints. The debonding between CP Ti and Ti-6Al-4V was observed in the specimen brazed for 5 min and the fracture of the CP Ti corrugated core occurred after 30 min of brazing time. Additionally, when brazed for 10 min or 20 min, brittle intermetallic compounds in the joints and the grain growth of the base metal were controllable. Therefore, the sandwich structures failed without debonding in the joints or fracture within the base metal, demonstrating a good combination of strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Liu, H. Wang, and Z. Guan, Experimental and Numerical Study on the Mechanical Response of Nomex Honeycomb Core Under Transverse Loading, Compos. Struct., 2015, 121, p 304–314

    Article  Google Scholar 

  2. V. Crupi, G. Epasto, and E. Guglielmino, Collapse Modes in Aluminium Honeycomb Sandwich Panels Under Bending and Impact Loading, Int. J. Impact Eng, 2012, 43, p 6–15

    Article  Google Scholar 

  3. E. Bormashenko, R. Pogreb, Y. Bormashenko, R. Grynyov, and O. Gendelman, Low Voltage Reversible Electrowetting Exploiting Lubricated Polymer Honeycomb Substrates, Appl. Phys. Lett., 2014, 104(17), p 171601

    Article  Google Scholar 

  4. K. Kang, S.K. Hong, D.S. Noh, and H.S. Ryou, Heat Transfer Characteristics of a Ceramic Honeycomb Regenerator for an Oxy-fuel Combustion Furnace, Appl. Therm. Eng., 2014, 70(1), p 494–500

    Article  Google Scholar 

  5. S. Lee, F. Barthelat, J.W. Hutchinson, and H.D. Espinosa, Dynamic Failure of Metallic Pyramidal Truss Core Materials-Experiments and Modeling, Int. J. Plast., 2006, 22(11), p 2118–2145

    Article  Google Scholar 

  6. D.G. Ahn, G.H. Nam, C.G. Jung, and D.Y. Yang, Experimental Determination of Elastic Properties of the Core in a Thin Sandwich Plate with a Metallic Truss Core, Int. J. Precis. Eng. Man., 2009, 10(5), p 107–113

    Article  Google Scholar 

  7. J. Liu, X. Zhu, Z. Zhou, and L. Ma, Effects of Thermal Exposure on Mechanical Behavior of Carbon Fiber Composite Pyramidal Truss Core Sandwich Panel, Compos. B, 2014, 60, p 82–90

    Article  Google Scholar 

  8. H. Ikeda, and K. Inamori, Thermoplastic Resin Foam, Method of Producing the Same, and Light Reflecting Material Using the Same, U.S. Patent No. 8,853,288

  9. W. Li, G. Huang, Y. Bai, Y. Dong, and S. Feng, Dynamic Response of Spherical Sandwich Shells with Metallic Foam Core Under External Air Blast Loading-Numerical Simulation, Compos. Struct., 2014, 116, p 612–625

    Article  Google Scholar 

  10. M.R.M. Rejab and W.J. Cantwell, The Mechanical Behaviour of Corrugated-Core Sandwich Panels, Compos. B, 2013, 47, p 267–277

    Article  Google Scholar 

  11. K. Wei, R. He, X. Cheng, R. Zhang, Y. Pei, and D. Fang, Fabrication and Mechanical Properties of Lightweight ZrO2 Ceramic Corrugated Core Sandwich Panels, Mater. Des., 2014, 64, p 91–95

    Article  Google Scholar 

  12. T.A. Barnes and I.R. Pashby, Joining Techniques for Aluminium Spaceframes used in Automobiles: Part II-Adhesive Bonding and Mechanical Fasteners, J. Mater. Process. Technol., 2000, 99(1), p 72–79

    Article  Google Scholar 

  13. J. Banhart and H.W. Seeliger, Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications, Adv. Eng. Mater., 2008, 10(9), p 793–802

    Article  Google Scholar 

  14. S.D. Elrod, D.T. Lovell, and R. Davis, Aluminum Brazed Titanium Honeycomb Sandwich Structure—A New System, Weld. J., 1973, 52(10), p 425

    Google Scholar 

  15. L. Wan, Y. Huang, S. Lv, and J. Feng, Fabrication and Interfacial Characterization of Aluminum Foam Sandwich via Fluxless Soldering with Surface Abrasion, Compos. Struct., 2015, 123, p 366–373

    Article  Google Scholar 

  16. C.G. Jung, D.Y. Seung, D.Y. Yang, S.J. Na, and D.G. Ahn, Development of a Continuous Fabrication System for a Metallic Sandwich Plate with a Three-Dimensional Truss Core, Int. J. Adv. Manuf. Technol., 2009, 45(3–4), p 352–361

    Article  Google Scholar 

  17. L. Valdevit, J.W. Hutchinson, and A.G. Evans, Structurally Optimized Sandwich Panels with Prismatic Cores, Int. J. Solids Struct., 2004, 41(18), p 5105–5124

    Article  Google Scholar 

  18. A. Elrefaey and W. Tillmann, Brazing of Titanium to Steel with Different Filler Metals: Analysis and Comparison, J. Mater. Sci., 2010, 45(16), p 4332–4338

    Article  Google Scholar 

  19. S. Lathabai, B.L. Jarvis, and K.J. Barton, Comparison of Keyhole and Conventional Gas Tungsten Arc Welds in Commercially Pure Titanium, Mater. Sci. Eng. A, 2001, 299(1), p 81–93

    Article  Google Scholar 

  20. E. Ganjeh and H. Sarkhosh, Microstructural, Mechanical and Fractographical Study of Titanium-CP and Ti-6Al-4V Similar Brazing with Ti-Based Filler, Mater. Sci. Eng. A, 2013, 559, p 119–129

    Article  Google Scholar 

  21. X.L. Gao, L.J. Zhang, J. Liu, and J.X. Zhang, A Comparative Study of Pulsed Nd: YAG Laser Welding and TIG Welding of Thin Ti6Al4V Titanium Alloy Plate, Mat. Sci. Eng. A, 2013, 559, p 14–21

    Article  Google Scholar 

  22. E. Ganjeh, H. Sarkhosh, M.E. Bajgholi, H. Khorsand, and M. Ghaffari, Increasing Ti-6Al-4V Brazed Joint Strength Equal to the Base Metal by Ti and Zr Amorphous Filler Alloys, Mater. Charact., 2012, 71, p 31–40

    Article  Google Scholar 

  23. K. Aydın, Y. Kaya, and N. Kahraman, Experimental Study of Diffusion Welding/Bonding of Titanium to Copper, Mater. Des., 2012, 37, p 356–368

    Article  Google Scholar 

  24. V.A. Sidyakin, D.K. Pechenkin, V.M. Arbuzov, and V.S. Khaustov, Butt Welding of Steel-Titanium Pipe Transition Pieces, Weld. Int., 2004, 18(12), p 977–981

    Article  Google Scholar 

  25. B. Qin, G.M. Sheng, J.W. Huang, B. Zhou, S.Y. Qiu, and C. Li, Phase Transformation Diffusion Bonding of Titanium Alloy with Stainless Steel, Mater. Charact., 2006, 56(1), p 32–38

    Article  Google Scholar 

  26. B. Kurt, N. Orhan, E. Evin, and A. Çalik, Diffusion Bonding Between Ti-6Al-4V Alloy and Ferritic Stainless Steel, Mater. Lett., 2007, 61(8), p 1747–1750

    Article  Google Scholar 

  27. A. Shapiro and A. Rabinkin, State of the Art of Titanium-Based Brazing Filler Metals, Weld. J., 2003, 82(10), p 36–43

    Google Scholar 

  28. Sandin T, What’s Happening with Aerospace Brazing, Weld. J., 2013, 92(10), p 56–58

    Google Scholar 

  29. R. Beeranur, K.K. Waghmare, and R.K. Singh, Characterization of Vacuum Brazing of SS 304 and Alumina Ceramic with Active Brazing Alloy, Procedia Mater. Sci., 2014, 5, p 969–977

    Article  Google Scholar 

  30. T. Onzawa, A. Suzumura, and M.W. Ko, Brazing of Titanium Using Low-Melting-Point Ti-Based Filler Metals, Weld. Res. Suppl., 1990, 69(12), p 462–467

    Google Scholar 

  31. K.J. Doherty, J.R. Tice, S.T. Szewczyk, and G.A. Gilde, Brazing Titanium for Structural and Vehicle Applications, Weld. J., 2007, 86(9), p 41

    Google Scholar 

  32. C.T. Chang, Z.Y. Wu, R.K. Shiue, and C.S. Chang, Infrared Brazing Ti-6Al-4V and SP-700 Alloys Using the Ti-20Zr-20Cu-20Ni Braze Alloy, Mater. Lett., 2007, 61(3), p 842–845

    Article  Google Scholar 

  33. D.H. Kang, J.H. Sun, D.M. Lee, S.Y. Shin, and H.S. Kim, Partially Alloyed Filler Sheet for Brazing of Ti and Its Alloys Fabricated by Spark Plasma Sintering Method, Mater. Sci. Eng. A, 2009, 527(1), p 239–244

    Article  Google Scholar 

  34. M. Iijima, W.A. Brantley, I. Kawashima, N. Baba, S.B. Alapati, T. Yuasa, H. Ohno, and I. Mizoguchi, Microstructures of Beta-Titanium Orthodontic Wires Joined by Infrared Brazing, J. Biomed. Mater. Res. B, 2006, 79(1), p 137–141

    Article  Google Scholar 

  35. G. Lütjering and J.C. Williams, Titanium, 2nd ed., B. Derby, Ed., Springer, Berlin, 2003, p 29–32

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX_0263) and the Fundamental Research Funds for the Central Universities and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Fan, M., Li, J. et al. Interfacial Microstructure Evolution and Shear Strength of Titanium Sandwich Structures Fabricated by Brazing. J. of Materi Eng and Perform 25, 774–780 (2016). https://doi.org/10.1007/s11665-016-1905-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1905-y

Keywords

Navigation