Skip to main content
Log in

On the KPZ Scaling and the KPZ Fixed Point for TASEP

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider all totally asymmetric simple exclusion processes (TASEPs) whose transition probabilities are given by the Schütz-type formulas and which jump with homogeneous rates. We show that the multi-point distribution of particle positions and the KPZ scaling are described using the probability generating function of the rightmost particle’s jump. For all TASEPs satisfying certain assumptions, we also prove the pointwise convergence of the kernels appearing in the joint distribution of particle positions to those appearing in the KPZ fixed point formula. Our result generalizes the result of Matetski, Quastel, and Remenik [18] in the sense that we provide the KPZ fixed point formulation for a class of TASEPs, instead of for one specific TASEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

  1. Arai, Y.: The KPZ fixed point for discrete time TASEPs. J. Phys. A 53, 415202 (2020)

    Article  MathSciNet  Google Scholar 

  2. Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109, 1–65 (2001)

    Article  MathSciNet  Google Scholar 

  3. Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109, 205–281 (2001)

    Article  MathSciNet  Google Scholar 

  4. Billingsley, P.: Convergence of probability measures, Wiley Series in Probability and Statistics. Wiley, New York (1999)

    Book  Google Scholar 

  5. Bisi, E., Liao, Y., Saenz, A., Zygouras, N.: Non-intersecting path constructions for TASEP with inhomogeneous rates and the KPZ fixed point. Comm. Math. Phys. 402, 285–333 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  6. Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13, 1380–1418 (2008)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A., Ferrari, P.L.: Anisotropic Growth of Random Surfaces in \(2 + 1\) Dimensions. Comm. Math. Phys. 325, 603–684 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuation in the discrete TASEP with periodic initial configurations and the \({\rm Airy}_1\) process. Int. Math. Res. Pap. IMRP 2007, 1–47 (2007)

    Google Scholar 

  9. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Borodin, A., Ferrari, P.L., Sasamoto, T.: Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Comm. Math. Phys. 283, 417–449 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Corwin, I., Hammond, A., Hegde, M., Matetski, K.: Exceptional times when the KPZ fixed point violates Johansson’s conjecture on maximizer uniqueness. Electron. J. Probab. 28, 1–81 (2023)

    Article  MathSciNet  Google Scholar 

  12. Dieker, A.B., Warren, J.: Determinantal transition kernels for some interacting particles on the line. Ann. Inst. Henri Poincaré Probab. Stat. 44, 1162–1172 (2008)

    Article  MathSciNet  Google Scholar 

  13. Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242, 277–329 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  Google Scholar 

  16. Matetski, K., Remenik, D.: Exact solution of TASEP and variants with inhomogeneous speeds and memory lengths, arXiv:2301.13739, (2023)

  17. Matetski, K., Remenik, D.: TASEP and generalizations: Method for exact solution. Probab. Theory Related Fields 185, 615–698 (2023)

    Article  MathSciNet  Google Scholar 

  18. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. Acta Math. 227, 115–203 (2021)

    Article  MathSciNet  Google Scholar 

  19. Nica, M., Quastel, J., Remenik, D.: One-sided reflected Brownian motions and the KPZ fixed point. Forum Math. Sigma 8, 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  20. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1 + 1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000)

    Article  ADS  Google Scholar 

  21. Prähofer, M., Spohn, H.: Scale Invariance of the PNG Droplet and the Airy Process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MathSciNet  Google Scholar 

  22. Quastel, J., Matetski, K.: From the totally asymmetric simple exclusion process to the KPZ fixed point. IAS/Park City Math. Ser., Providence, RI: Amer. Math. Soc., 26, 251–301 (2019)

    Article  MathSciNet  Google Scholar 

  23. Quastel, J., Sarkar, S.: Convergence of exclusion processes and the KPZ equation to the KPZ fixed point. J. Amer. Math. Soc. 36, 251–289 (2023)

    Article  MathSciNet  Google Scholar 

  24. Rákos, A., Schütz, G.M.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511–530 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Sarkar, S., Virág, B.: Brownian absolute continuity of the KPZ fixed point with arbitrary initial condition. Ann. Probab. 49, 1718–1737 (2021)

    Article  MathSciNet  Google Scholar 

  26. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, 549–556 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. Simon, B.: Trace ideals and their applications, Mathematical Surveys and Monographs, Providence, RI: Amer. Math. Soc. 120, (2005)

  29. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  Google Scholar 

  30. Spohn, H.: KPZ scaling theory and the semi-discrete directed polymer model, Random matrix theory, interacting particle systems, and integrable systems, 65, Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, 483–493 (2014)

  31. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177, 727–754 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. Warren, J., Windridge, P.: Some Examples of Dynamics for Gelfand-Tsetlin Patterns. Electron. J. Probab. 14, 1745–1769 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Arai.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest directly relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A The KPZ fixed point for the continuous time TASEP with jump rate \(\beta \)

In this section, we use our method to show that the KPZ fixed point is obtained in the continuous time TASEP with jump rate \(\beta \in (0, \infty )\). From (2.3) and Proposition 2, we get

$$\begin{aligned} {\mathcal {M}}(w)=e^{\beta (w-1)}. \end{aligned}$$

Besides, by (2.25), we have

$$\begin{aligned} \gamma (w)=e^{-\frac{\beta }{2}w}. \end{aligned}$$

If \(\gamma (w)\) satisfies Assumption 5 and 7, we can show Theorem 8 using Theorem 4 and Proposition 9. Therefore, we prove that \(\gamma (w)\) satisfies Assumption 5 and Assumption 7.

First, we show that \(\gamma (w)\) satisfies Assumption 5. Calculating the derivatives of \(\gamma (w)\) up to the third order, we get

$$\begin{aligned} \gamma ^{'}(w)= & {} -\frac{\beta }{2}e^{-\frac{\beta }{2}w}, ~\gamma ^{(2)}(w)=\frac{\beta ^2}{4}e^{-\frac{\beta }{2}w},\nonumber \\ ~\gamma ^{(3)}(w)= & {} -\frac{\beta ^3}{8}e^{-\frac{\beta }{2}w}. \end{aligned}$$
(A1)

Substituting \(w=0\) in (A1) gives

$$\begin{aligned} \gamma ^{'}(0)= & {} -\frac{\beta }{2}, ~\gamma ^{(2)}(0)=\frac{\beta ^2}{4},\nonumber \\ ~\gamma ^{(3)}(0)= & {} -\frac{\beta ^3}{8}. \end{aligned}$$
(A2)

Thus, we obtain

$$\begin{aligned} \gamma ^{(3)}(0)-3\gamma ^{(2)}(0)\gamma ^{'}(0)+2\{\gamma ^{'}(0)\}^3- 2\gamma ^{'}(0)=\beta >0. \end{aligned}$$

Next we prove that \(\gamma (w)\) satisfies Assumption 7. By (2.38), (2.39), (2.40), and (A2), we have

$$\begin{aligned} D=\frac{2}{\beta }, ~ E=\frac{1}{2}, ~ F=\frac{1}{2}. \end{aligned}$$
(A3)

Note that \(\log (1+x)< x\) for \(x\in (-1, \infty )\setminus \{0\}\). For \(\theta \in [-\pi , -\frac{\pi }{3})\cup (\frac{\pi }{3}, \pi ]\), by (A3), we obtain

$$\begin{aligned} E\log |2-e^{i\theta }|+D\log |\gamma (1-e^{i\theta })| <\frac{1}{4}(4-4\cos \theta )+\cos \theta -1=0 \end{aligned}$$

and

$$\begin{aligned} F\log |2-e^{i\theta }|-D\log |\gamma (e^{i\theta }-1)|<\frac{1}{4}(4-4\cos \theta )+\cos \theta -1=0. \end{aligned}$$

This completes the proof.

Appendix B The KPZ fixed point for the discrete time Bernoulli TASEP with sequential update

In this section, we use our method to prove that the KPZ fixed point is derived in the discrete time Bernoulli TASEP with sequential update. This proof can be shown in a similar manner to Appendix A. By (2.4) and Proposition 2, we have

$$\begin{aligned} {\mathcal {M}}(w)=1-p+pw. \end{aligned}$$

Furthermore, by (2.25), we get

$$\begin{aligned} \gamma (w)=1-\frac{p}{2-p}w. \end{aligned}$$

If \(\gamma (w)\) satisfies Assumption 5 and Assumption 7, we can prove Theorem 8 using Theorem 4 and Proposition 9. Thus, we show that \(\gamma (w)\) satisfies Assumption 5 and Assumption 7.

First, we prove that \(\gamma (w)\) satisfies Assumption 5. Calculating the derivatives of \(\gamma (w)\) up to the third order, we obtain

$$\begin{aligned} \gamma ^{'}(w)=-\frac{p}{2-p}, ~\gamma ^{(2)}(w)=0, ~\gamma ^{(3)}(w)=0. \end{aligned}$$
(B1)

Substituting \(w=0\) in (B1) gives

$$\begin{aligned} \gamma ^{'}(0)=-\frac{p}{2-p}, ~\gamma ^{(2)}(0)=0, ~\gamma ^{(3)}(0)=0. \end{aligned}$$
(B2)

Therefore, we get

$$\begin{aligned} \gamma ^{(3)}(0)-3\gamma ^{(2)}(0)\gamma ^{'}(0)+2 \{\gamma ^{'}(0)\}^3-2\gamma ^{'}(0)=\frac{8p(1-p)}{(2-p)^3}>0. \end{aligned}$$

Next we show that \(\gamma (w)\) satisfies Assumption 7. By (2.38), (2.39), (2.40), and (B2), we obtain

$$\begin{aligned} D=\frac{(2-p)^3}{4p(1-p)}, ~ E=\frac{2-p}{4}, ~ F=\frac{2-p}{4(1-p)}. \end{aligned}$$
(B3)

Note that \(\log (1+x)< x\) for \(x\in (-1, \infty )\setminus \{0\}\). For \(\theta \in [-\pi , -\frac{\pi }{3})\cup (\frac{\pi }{3}, \pi ]\), by (B3), we have

$$\begin{aligned} E\log |2-e^{i\theta }|+D\log |\gamma (1-e^{i\theta })|< \frac{2-p}{2}\left( 1-\cos \theta \right) + \frac{2-p}{2}\left( \cos \theta -1\right) =0 \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} F\log |2-e^{i\theta }|&-D\log |\gamma (e^{i\theta }-1)|\\&=\frac{2-p}{8(1-p)}\log \left( 1+\frac{4(4-p)(1-p)}{(2-p)^2+4p(1-\cos \theta )}(1-\cos \theta )\right) \\&\quad +\frac{(2-p)(4-p)}{8p}\log \left( 1+\frac{4p}{(2-p)^2+4p(1-\cos \theta )}(\cos \theta -1)\right) \\&\quad < \frac{(2-p)(4-p)}{2\left\{ (2-p)^2+4p(1-\cos \theta )\right\} }\left( 1-\cos \theta \right) \\&\quad +\frac{(2-p)(4-p)}{2\left\{ (2-p)^2+4p(1-\cos \theta )\right\} }\left( \cos \theta -1\right) \\&=0. \end{aligned} \end{aligned}$$

Note that we used the expression transform

$$\begin{aligned} \begin{aligned} \frac{2-p}{8(1-p)}&\log (5-4\cos \theta )-\frac{(2-p)^3}{8p(1-p)}\log \left( 1+\frac{4p(1-\cos \theta )}{(2-p)^2}\right) \\&=\frac{2-p}{8(1-p)}\left[ \log (5-4\cos \theta )-\log \left( 1+\frac{4p(1-\cos \theta )}{(2-p)^2}\right) \right] \\&\quad -\frac{(2-p)(4-p)}{8p}\log \left( 1+\frac{4p(1-\cos \theta )}{(2-p)^2}\right) \\&=\frac{2-p}{8(1-p)}\log \left( 1+\frac{4(4-p)(1-p)}{(2-p)^2+4p(1-\cos \theta )}(1-\cos \theta )\right) \\&\quad +\frac{(2-p)(4-p)}{8p}\log \left( 1+\frac{4p}{(2-p)^2+4p(1-\cos \theta )}(\cos \theta -1)\right) . \end{aligned} \end{aligned}$$
(B4)

This completes the proof.

Appendix C The KPZ fixed point for the discrete time geometric TASEP with parallel update

In this section, we use our method to show that the KPZ fixed point is obtained in the discrete time geometric TASEP with parallel update. This proof can be proved in a similar manner to Appendix A and Appendix B. By (2.7) and Proposition 2, we obtain

$$\begin{aligned} {\mathcal {M}}(w)=\frac{1-\alpha }{1-\alpha w}. \end{aligned}$$

Moreover, by (2.25), we have

$$\begin{aligned} \gamma (w)=\frac{1}{1+\frac{\alpha }{2-\alpha }w}. \end{aligned}$$

If \(\gamma (w)\) satisfies Assumption 5 and Assumption 7, we can show Theorem 8 using Theorem 4 and Proposition 9. Therefore, we prove that \(\gamma (w)\) satisfies Assumption 5 and Assumption 7.

First, we show that \(\gamma (w)\) satisfies Assumption 5. Calculating the derivatives of \(\gamma (w)\) up to the third order, we obtain

$$\begin{aligned} \begin{aligned} \gamma ^{'}(w)&=-\frac{\alpha }{2-\alpha }\left( \frac{1}{1+\frac{\alpha }{2-\alpha }w}\right) ^2, ~\gamma ^{(2)}(w)=2\left( \frac{\alpha }{2-\alpha }\right) ^2\left( \frac{1}{1+\frac{\alpha }{2-\alpha }w}\right) ^3,\\ \gamma ^{(3)}(w)&=-6\left( \frac{\alpha }{2-\alpha }\right) ^3\left( \frac{1}{1+\frac{\alpha }{2-\alpha }w}\right) ^4. \end{aligned} \end{aligned}$$
(C1)

Substituting \(w=0\) in (C1) gives

$$\begin{aligned} \gamma ^{'}(0)= & {} -\frac{\alpha }{2-\alpha }, ~\gamma ^{(2)}(0)=2\left( \frac{\alpha }{2-\alpha }\right) ^2,\nonumber \\ ~\gamma ^{(3)}(0)= & {} -6\left( \frac{\alpha }{2-\alpha }\right) ^3. \end{aligned}$$
(C2)

Thus, we have

$$\begin{aligned} \gamma ^{(3)}(0)-3\gamma ^{(2)}(0)\gamma ^{'}(0) +2\{\gamma ^{'}(0)\}^3-2\gamma ^{'}(0)=\frac{8\alpha (1-\alpha )}{(2-\alpha )^3}>0. \end{aligned}$$

Next we prove that \(\gamma (w)\) satisfies Assumption 7. By (2.38), (2.39), (2.40), and (C2), we obtain

$$\begin{aligned} D=\frac{(2-\alpha )^3}{4\alpha (1-\alpha )}, ~ E=\frac{2-\alpha }{4(1-\alpha )}, ~ F=\frac{2-\alpha }{4}. \end{aligned}$$
(C3)

We remark that \(\log (1+x)< x\) for \(x\in (-1, \infty )\setminus \{0\}\). For \(\theta \in [-\pi , -\frac{\pi }{3})\cup (\frac{\pi }{3}, \pi ]\), by (C3), we get

$$\begin{aligned} \begin{aligned}&E\log |2-e^{i\theta }|+D\log |\gamma (1-e^{i\theta })|\\&\quad =\frac{2-\alpha }{8(1-\alpha )}\log \left( 1+\frac{4(4-\alpha )(1-\alpha )}{(2-\alpha )^2+4\alpha (1-\cos \theta )}(1-\cos \theta )\right) \\&\qquad +\frac{(2-\alpha )(4-\alpha )}{8\alpha }\log \left( 1+\frac{4\alpha }{(2-\alpha )^2+4\alpha (1-\cos \theta )}(\cos \theta -1)\right) \\&\qquad < \frac{(2-\alpha )(4-\alpha )}{2\left\{ (2-\alpha )^2+4\alpha (1-\cos \theta )\right\} }\left( 1-\cos \theta \right) \\&\qquad +\frac{(2-\alpha )(4-\alpha )}{2\left\{ (2-\alpha )^2+4\alpha (1-\cos \theta )\right\} }\left( \cos \theta -1\right) \\&\quad =0. \end{aligned} \end{aligned}$$

and

$$\begin{aligned} F\log |2-e^{i\theta }|-D\log |\gamma (e^{i\theta }-1)|< \frac{2-\alpha }{2}\left( 1-\cos \theta \right) + \frac{2-\alpha }{2}\left( \cos \theta -1\right) =0 \end{aligned}$$

Note that we used a transformation similar to (B4). This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, Y. On the KPZ Scaling and the KPZ Fixed Point for TASEP. Math Phys Anal Geom 27, 4 (2024). https://doi.org/10.1007/s11040-024-09475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-024-09475-y

Keywords

Navigation