Skip to main content
Log in

Insight into the pathophysiological advances and molecular mechanisms underlying cerebral stroke: current status

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Molecular pathways involved in cerebral stroke are diverse. The major pathophysiological events that are observed in stroke comprises of excitotoxicity, oxidative stress, mitochondrial damage, endoplasmic reticulum stress, cellular acidosis, blood–brain barrier disruption, neuronal swelling and neuronal network mutilation. Various biomolecules are involved in these pathways and several major proteins are upregulated and/or suppressed following stroke. Different types of receptors, ion channels and transporters are activated. Fluctuations in levels of various ions and neurotransmitters have been observed. Cells involved in immune responses and various mediators involved in neuro-inflammation get upregulated progressing the pathogenesis of the disease. Despite of enormity of the problem, there is not a single therapy that can limit infarction and neurological disability due to stroke. This is because of poor understanding of the complex interplay between these pathophysiological processes. This review focuses upon the past to present research on pathophysiological events that are involved in stroke and various factors that are leading to neuronal death following cerebral stroke. This will pave a way to researchers for developing new potent therapeutics that can aid in the treatment of cerebral stroke.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Go AS, Mozaffarian D, Roger VL et al (2014) Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:399–410. https://doi.org/10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  2. Jackevicius CA, Li P, Tu JV et al (2008) Prevalence, predictors, and outcomes of primary nonadherence after acute myocardial infarction. Circulation 117:1028–1036. https://doi.org/10.1161/CIRCULATIONAHA.107.706820

    Article  PubMed  Google Scholar 

  3. Orset C, Arkelius K, Anfray A et al (2021) Combination treatment with U0126 and rt-PA prevents adverse effects of the delayed rt-PA treatment after acute ischemic stroke. Sci Rep 111(11):1–10. https://doi.org/10.1038/s41598-021-91469-9

    Article  CAS  Google Scholar 

  4. Leigh R, Knutsson L, Zhou J, van Zijl PC (2017) Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X17700913

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dhapola R, Samir, Beura K et al (2024) Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics. Mol Biol Rep 51:1–18. https://doi.org/10.1007/S11033-023-09021-Z

    Article  Google Scholar 

  6. Dhapola R, Subhendu, Hota S et al (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681. https://doi.org/10.1007/S10787-021-00889-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumari S, Dhapola R, Sharma P et al (2023) Implicative role of cytokines in neuroinflammation mediated AD and associated signaling pathways: current progress in molecular signaling and therapeutics. Ageing Res Rev 92:102098. https://doi.org/10.1016/J.ARR.2023.102098

    Article  CAS  Google Scholar 

  8. Thakur S, Dhapola R, Sarma P et al (2022) Neuroinflammation in alzheimer’s disease: current progress in molecular signaling and therapeutics. Inflammation. https://doi.org/10.1007/S10753-022-01721-1/TABLES/1

    Article  PubMed  Google Scholar 

  9. Dhapola R, Sarma P, Medhi B, Prakash A et al (2021) Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s disease. Mol Neurobiol 1:1–21. https://doi.org/10.1007/S12035-021-02612-6

    Article  Google Scholar 

  10. Nagar P, Sharma P, Dhapola R et al (2023) Endoplasmic reticulum stress in Alzheimer’s disease: molecular mechanisms and therapeutic prospects. Life Sci. https://doi.org/10.1016/J.LFS.2023.121983

    Article  PubMed  Google Scholar 

  11. Kumari S, Dhapola R, Reddy DH (2023) Apoptosis in Alzheimer’s disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 28:943–957. https://doi.org/10.1007/s10495-023-01848-y

    Article  PubMed  Google Scholar 

  12. Qin C, Yang S, Chu Y-H et al (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7:215. https://doi.org/10.1038/s41392-022-01064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y (2022) Disturbed cerebral circulation and metabolism matters. J Neurochem 160:10–12. https://doi.org/10.1111/JNC.15552

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Dong Y, Lu Y et al (2019) Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Mol Neurobiol 56:1852–1869. https://doi.org/10.1007/S12035-018-1191-9/FIGURES/8

    Article  CAS  PubMed  Google Scholar 

  15. Xie Y-F, Macdonald JF, Jackson MF (2010) TRPM2, calcium and neurodegenerative diseases. Int J Physiol Pathophysiol Pharmacol 2:95–103

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabricius M, Fuhr S, Bhatia R et al (2006) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129:778–790. https://doi.org/10.1093/brain/awh716

    Article  PubMed  Google Scholar 

  17. Sun Y, Feng X, Ding Y et al (2019) Phased treatment strategies for cerebral ischemia based on glutamate receptors. Front Cell Neurosci 13:168. https://doi.org/10.3389/FNCEL.2019.00168/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu L, Xiong X, Wu X et al (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28. https://doi.org/10.3389/FNMOL.2020.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kago T, Takagi N, Date I, Takenaga Y, Takagi K, ST, (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 339:1197–1203. https://doi.org/10.1016/J.BBRC.2005.11.133

    Article  CAS  PubMed  Google Scholar 

  20. Zhao X, Zhu L, Liu D et al (2019) Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/reperfusion injury. Apoptosis 24:157–167. https://doi.org/10.1007/S10495-018-1495-2/FIGURES/8

    Article  PubMed  Google Scholar 

  21. Tóth OM, Menyhárt Á, Frank R et al (2020) Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel) 9:460. https://doi.org/10.3390/BIOLOGY9120460

    Article  Google Scholar 

  22. Kaila K, Price TJ, Payne JA et al (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15:637–654. https://doi.org/10.1038/nrn3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Da Silva-Candal A, Maria-Perez-Mato CJ (2022) Treatments against glutamatergic excitotoxicity in ischemic stroke. Glutamate Neuropsychiatr Disord. https://doi.org/10.1007/978-3-030-87480-3_1

    Article  Google Scholar 

  24. Lim D, Semyanov A, Genazzani A, Verkhratsky A (2021) Calcium signaling in neuroglia. Int Rev Cell Mol Biol 362:1–53. https://doi.org/10.1016/BS.IRCMB.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  25. Murphy-Royal C, Dupuis J, Groc L, Oliet SHR (2017) Astroglial glutamate transporters in the brain: regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 95:2140–2151. https://doi.org/10.1002/jnr.24029

    Article  CAS  PubMed  Google Scholar 

  26. Harvey BK, Airavaara M, Hinzman J et al (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS ONE 6:e22135. https://doi.org/10.1371/journal.pone.0022135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Levy JM, Hou A et al (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci USA 112:E6983–E6992. https://doi.org/10.1073/pnas.1517045112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin X-H, Yana J-Z, Yang G, Chen L, Xiao-Feng X, Hong X-P, Shi-Liang W, Houa X-Y, Zhang GY (2016) PDZ1 inhibitor peptide protects neurons against ischemia via inhibiting GluK2-PSD-95-module-mediated Fas signaling pathway. Brain Res 1637:64–70. https://doi.org/10.1016/J.BRAINRES.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  29. Martins B, Frank D, Zlotnik A et al (2022) The development of novel drug treatments for stroke patients: a review. Int J Mol Sci 23:5796. https://doi.org/10.3390/IJMS23105796

    Article  Google Scholar 

  30. Kimelberg HK, Rutledge E, Goderie S, Charniga C (1995) Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15:409–416. https://doi.org/10.1038/jcbfm.1995.51

    Article  CAS  PubMed  Google Scholar 

  31. Swanson RA, Farrell K, Simon RP (1995) Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb Blood Flow Metab 15:417–424. https://doi.org/10.1038/jcbfm.1995.52

    Article  CAS  PubMed  Google Scholar 

  32. Giffard RG, Hannelore DW et al (1990) Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res 530:138–141. https://doi.org/10.1016/0006-8993(90)90670-7

    Article  CAS  PubMed  Google Scholar 

  33. de la Rosa DA, Krueger SR, Kolar A et al (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77–87. https://doi.org/10.1113/jphysiol.2002.030692

    Article  CAS  Google Scholar 

  34. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483. https://doi.org/10.1016/S0166-2236(03)00210-8

    Article  CAS  PubMed  Google Scholar 

  35. Sun H-S, Jackson MF, Martin LJ et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307. https://doi.org/10.1038/nn.2395

    Article  CAS  PubMed  Google Scholar 

  36. Perraud A-L, Takanishi CL, Shen B et al (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148. https://doi.org/10.1074/jbc.M411446200

    Article  CAS  PubMed  Google Scholar 

  37. Van den Eynde C, Vriens J, De Clercq K (2021) Transient receptor potential channel regulation by growth factors. Biochim Biophys Acta Mol Cell Res 1868:118950. https://doi.org/10.1016/J.BBAMCR.2021.118950

    Article  PubMed  Google Scholar 

  38. Yamamoto S, Shimizu S, Kiyonaka S et al (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747. https://doi.org/10.1038/nm1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alim I, Teves L, Li R et al (2013) Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 33:17264–17277. https://doi.org/10.1523/JNEUROSCI.1729-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu S, Zheng T, Du J et al (2020) Neuroprotective effect of low-intensity transcranial ultrasound stimulation in endothelin-1-induced middle cerebral artery occlusion in rats. Brain Res Bull 161:127–135. https://doi.org/10.1016/J.BRAINRESBULL.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  41. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+–K+ + 2Cl cotransport in the heart, brain, and blood. Am J Physiol 291:R1-25. https://doi.org/10.1152/ajpregu.00782.2005

    Article  CAS  Google Scholar 

  42. Russell JM (2000) Sodium–potassium–chloride cotransport. Physiol Rev 80:211–276

    Article  CAS  PubMed  Google Scholar 

  43. Flatman PW (2008) Cotransporters, WNKs and hypertension: an update. Curr Opin Nephrol Hypertens 17:186–192. https://doi.org/10.1097/MNH.0b013e3282f5244e

    Article  CAS  PubMed  Google Scholar 

  44. Payne JA, Kaila CRJVK (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206. https://doi.org/10.1016/S0166-2236(03)00068-7

    Article  CAS  PubMed  Google Scholar 

  45. Mercado A, Mount DB, Gamba G (2004) Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res 29:17–25. https://doi.org/10.1023/B:NERE.0000010432.44566.21

    Article  CAS  PubMed  Google Scholar 

  46. Yan Y, Dempsey RJ, AndreasFlemmer BD (2003) Inhibition of Na+–K+–Cl cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 961:22–31. https://doi.org/10.1016/S0006-8993(02)03832-5

    Article  CAS  PubMed  Google Scholar 

  47. Buzsáki G, Kai Kaila MR (2007) Inhibition and brain work. Neuron 56:771–783. https://doi.org/10.1016/J.NEURON.2007.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen H, Kim GS, Okami N et al (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42:341–348. https://doi.org/10.1016/j.nbd.2011.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Łagowska-Lenard M, Bielewicz J, Raszewski G et al (2008) Oxidative stress in cerebral stroke. Pol Merkur Lekarski 25:205–208

    PubMed  Google Scholar 

  50. Kelmanson IV, Shokhina AG, Kotova DA et al (2021) In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 48:102178. https://doi.org/10.1016/j.redox.2021.102178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ehresman J, Cottrill E, Caplan JM et al (2021) Neuroprotective role of acidosis in ischemia: review of the preclinical evidence. Mol Neurobiol 58:6684–6696. https://doi.org/10.1007/s12035-021-02578-5

    Article  CAS  PubMed  Google Scholar 

  52. Zhu G, Wang X, Chen L et al (2022) Crosstalk between the oxidative stress and glia cells after stroke: from mechanism to therapies. Front Immunol 13:852416. https://doi.org/10.3389/fimmu.2022.852416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagasawa K, Chiba H, Fujita H et al (2006) Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208:123–132. https://doi.org/10.1002/jcp.20647

    Article  CAS  PubMed  Google Scholar 

  54. Wolburg H (2006) The endothelial frontier. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood–Brain Barriers. Wiley, Weinheim, pp 75–107

    Chapter  Google Scholar 

  55. Balda MS, Whitney JA, Flores C et al (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049. https://doi.org/10.1083/JCB.134.4.1031

    Article  CAS  PubMed  Google Scholar 

  56. Nitta T, Hata M, Gotoh S et al (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang X, Andjelkovic AV, Zhu L et al (2018) Blood–brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/J.PNEUROBIO.2017.10.001

    Article  PubMed  Google Scholar 

  58. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Estrada EY, Thompson JF et al (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  PubMed  Google Scholar 

  60. Asahi M, Asahi K, Jung J-C et al (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689. https://doi.org/10.1097/00004647-200012000-00007

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Hartman R, Ayer R et al (2009) Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem 111:726–736. https://doi.org/10.1111/j.1471-4159.2009.06362.x

    Article  CAS  PubMed  Google Scholar 

  62. Song Y, Li Q, Long L et al (2015) Asn563Ser polymorphism of CD31/PECAM-1 is associated with atherosclerotic cerebral infarction in a southern Han population. Neuropsychiatr Dis Treat 11:15–20. https://doi.org/10.2147/NDT.S75065

    Article  PubMed  Google Scholar 

  63. Duong CN, Vestweber D (2020) Mechanisms ensuring endothelial junction integrity beyond VE-cadherin. Front Physiol 11:519. https://doi.org/10.3389/FPHYS.2020.00519/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. https://doi.org/10.1016/J.NEURON.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  65. Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231. https://doi.org/10.3389/fncel.2014.00231

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bayir E, Sendemir A (2021) Role of intermediate filaments in blood–brain barrier in health and disease. Cells. https://doi.org/10.3390/CELLS10061400

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ezan P, André P, Cisternino S et al (2012) Deletion of astroglial connexins weakens the blood–brain barrier. J Cereb Blood Flow Metab 32:1457–1467. https://doi.org/10.1038/jcbfm.2012.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Obenaus A, Badaut J (2022) Role of the non-invasive imaging techniques in monitoring and understanding the evolution of brain edema. J Neurosci Res 100:1191–1200. https://doi.org/10.1002/JNR.24837

    Article  CAS  PubMed  Google Scholar 

  69. Beuker C, Strecker JK, Rawal R et al (2021) Immune cell infiltration into the brain after ischemic stroke in humans compared to mice and rats: a systematic review and meta-analysis. Transl Stroke Res 12:976–990. https://doi.org/10.1007/S12975-021-00887-4/FIGURES/4

    Article  PubMed  PubMed Central  Google Scholar 

  70. Peerschke EI, Wei Yinb BG (2010) Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 47:2170–2175. https://doi.org/10.1016/J.MOLIMM.2010.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yilmaz G, Granger DN (2010) Leukocyte recruitment and ischemic brain injury. NeuroMolecular Med 12:193–204. https://doi.org/10.1007/s12017-009-8074-1

    Article  CAS  PubMed  Google Scholar 

  72. Cao Y, Yue X, Jia M, Wang J (2023) Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 9:e17986. https://doi.org/10.1016/j.heliyon.2023.e17986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suresh L, Mehta NMRR (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66. https://doi.org/10.1016/J.BRAINRESREV.2006.11.003

    Article  Google Scholar 

  74. Marsh BJ (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020. https://doi.org/10.1016/J.NEUROSCIENCE.2008.07.067

    Article  CAS  PubMed  Google Scholar 

  75. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. https://doi.org/10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sugino T, Nozaki K, Hashimoto N (2000) Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid. Neurosci Lett 278:101–104. https://doi.org/10.1016/S0304-3940(99)00906-4

    Article  CAS  PubMed  Google Scholar 

  77. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. https://doi.org/10.1056/NEJMra0910283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zinnhardt B, Wiesmann M, Honold L et al (2018) In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies—towards clinical translation. Theranostics 8:2603–2620. https://doi.org/10.7150/thno.24128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zinnhardt B, Viel T, Wachsmuth L et al (2015) Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb blood flow Metab 35:1711–1721. https://doi.org/10.1038/jcbfm.2015.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao Y, Fang C, Wang J et al (2023) Neuroinflammatory biomarkers in the brain, cerebrospinal fluid, and blood after ischemic stroke. Mol Neurobiol 60:5117–5136. https://doi.org/10.1007/s12035-023-03399-4

    Article  CAS  PubMed  Google Scholar 

  81. Doll DN, Barr TL, Simpkins JW (2014) Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 5:294–306

    PubMed  PubMed Central  Google Scholar 

  82. Priante G, Gianesello L, Ceol M (2019) Cell death in the kidney. Int J Mol Sci. https://doi.org/10.3390/IJMS20143598

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mattson MP (2000) Apoptosis in neurodegenerative disorders—proquest. Humana Press, New Jersey

    Google Scholar 

  84. Nikoletopoulou V, Markaki M, Konstantinos Palikaras NT (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459. https://doi.org/10.1016/J.BBAMCR.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  85. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674. https://doi.org/10.1016/J.CELL.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  86. Liu Z, Qiu X, Mak S et al (2020) Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chem Biol Interact 325:109020. https://doi.org/10.1016/J.CBI.2020.109020

    Article  CAS  PubMed  Google Scholar 

  87. Xu B, Xiao A-J, Chen W et al (2016) Neuroprotective effects of a psd-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 53:5962–5970. https://doi.org/10.1007/s12035-015-9488-4

    Article  CAS  PubMed  Google Scholar 

  88. Cho Y, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the rip1–rip3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zong W-X, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15. https://doi.org/10.1101/gad.1376506

    Article  CAS  PubMed  Google Scholar 

  90. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540. https://doi.org/10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  91. Zalckvar E, Berissi H, Mizrachy L et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292. https://doi.org/10.1038/embor.2008.246

    Article  PubMed  PubMed Central  Google Scholar 

  92. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169:566–583. https://doi.org/10.2353/AJPATH.2006.051066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Friedle S, Curet M, Watters J (2010) Recent patents on novel p2x7 receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat CNS Drug Discov 5:35–45. https://doi.org/10.2174/157488910789753530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ajoolabady A, Wang S, Kroemer G et al (2021) Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther 225:107848. https://doi.org/10.1016/j.pharmthera.2021.107848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang Q, Jia M, Wang Y et al (2022) Cell death mechanisms in cerebral ischemia-reperfusion injury. Neurochem Res 47:3525–3542. https://doi.org/10.1007/s11064-022-03697-8

    Article  CAS  PubMed  Google Scholar 

  96. Kataoka K, Hayakawa T, Yamada K et al (1989) Neuronal network disturbance after focal ischemia in rats. Stroke 20:1226–1235. https://doi.org/10.1161/01.STR.20.9.1226

    Article  CAS  PubMed  Google Scholar 

  97. Memezawa H, Smith ML, Siesjö BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559. https://doi.org/10.1161/01.STR.23.4.552

    Article  CAS  PubMed  Google Scholar 

  98. Zhang S-J, Zou M, Lu L et al (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5:e1000604. https://doi.org/10.1371/journal.pgen.1000604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Schappell LE, Polizu C et al (2023) Evolving clinical-translational investigations of cerebroprotection in ischemic stroke. J Clin Med. https://doi.org/10.3390/jcm12216715

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee JS, Lee JS, Gwag BJ et al (2023) The Rescue on reperfusion damage in cerebral infarction by nelonemdaz (rodin) trial: protocol for a double-blinded clinical trial of nelonemdaz in patients with hyperacute ischemic stroke and endovascular thrombectomy. J stroke 25:160–168. https://doi.org/10.5853/jos.2022.02453

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.H.K.R is highly thankful to the UGC-BSR (Grant No. F.30-583/2021 (BSR) and Central University of Punjab, Bathinda-Research Seed Money (Grant No. CUPB/CC/PF/20/226) for providing research support. R.D is recipients of research fellowship from the Department of Science and Technology DST-INSPIRE (Reg. No. IF210098).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

D.H.K.R and B.M designed the manuscript. D.H.K.R and R.D wrote the manuscript and prepared the illustrated figures, and tables. D.H.KR. and B.M revised the manuscript for important intellectual content. All authors read and approved the final manuscript. All persons designated as authors qualify for author-ship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to Dibbanti HariKrishnaReddy.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

Not applicable.

Compliance with ethical standards

Yes.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhapola, R., Medhi, B. & HariKrishnaReddy, D. Insight into the pathophysiological advances and molecular mechanisms underlying cerebral stroke: current status. Mol Biol Rep 51, 649 (2024). https://doi.org/10.1007/s11033-024-09597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09597-0

Keywords

Navigation