Skip to main content
Log in

Cold atmospheric plasma attenuates skin cancer via ROS induced apoptosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear.

Methods and results

The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis.

Conclusions

These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.  6

Similar content being viewed by others

Data availability

All data are available from the corresponding author on reasonable request.

References

  1. Linares MA, Zakaria A, Nizran P (2015) Skin cancer. Prim Care 42:645–659. https://doi.org/10.1016/j.pop.2015.07.006

    Article  PubMed  Google Scholar 

  2. Rojas KD, Perez ME, Marchetti MA, Nichols AJ, Penedo FJ, Jaimes N (2022) Skin cancer: primary, secondary, and tertiary prevention. Part II, J Am Acad Dermatol 87:271–288. https://doi.org/10.1016/j.jaad.2022.01.053

    Article  PubMed  Google Scholar 

  3. Simoes MCF, Sousa JJS, Pais A (2015) Skin cancer and new treatment perspectives: a review. Cancer Lett 357:8–42. https://doi.org/10.1016/j.canlet.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed B, Qadir MI, Ghafoor S (2020) Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 30:291–297. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020028454

    Article  PubMed  Google Scholar 

  5. Schmults CD, Blitzblau R, Aasi SZ, Alam M, Andersen JS, Baumann BC, Bordeaux J, Chen PL, Chin R, Contreras CM, DiMaio D, Donigan JM, Farma JM, Ghosh K, Grekin RC, Harms K, Ho AL, Holder A, Lukens JN, Medina T, Nehal KS, Nghiem P, Park S, Patel T, Puzanov I, Scott J, Sekulic A, Shaha AR, Srivastava D, Stebbins W, Thomas V, Xu YG, McCullough B, Dwyer MA, Nguyen MQ (2021) NCCN guidelines(R) insights: squamous cell skin cancer, version 1.2022. J Natl Compr Canc Netw 19:1382–1394. https://doi.org/10.6004/jnccn.2021.0059

    Article  CAS  PubMed  Google Scholar 

  6. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD (2012) Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol 212:1–115. https://doi.org/10.1007/978-3-642-19683-6_1

    Article  Google Scholar 

  7. Xu H, Ma R, Zhu Y, Du M, Zhang H, Jiao Z (2020) A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. Sci Total Environ 703:134965. https://doi.org/10.1016/j.scitotenv.2019.134965

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda JI, Tanaka H, Ishikawa K, Sakakita H, Ikehara Y, Hori M (2018) Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol Int 68:23–30. https://doi.org/10.1111/pin.12617

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Sun T, Zhang X, Hou C, Shen Q, Wang D, Ni G (2023) Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 50:2025–2031. https://doi.org/10.1007/s11033-022-08026-4

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka H, Mizuno M, Ishikawa K, Toyokuni S, Kajiyama H, Kikkawa F, Hori M (2021) Cancer treatments using low-temperature plasma. Curr Med Chem 28:8549–8558. https://doi.org/10.2174/0929867328666210629121731

    Article  CAS  PubMed  Google Scholar 

  11. Xu D, Luo X, Xu Y, Cui Q, Yang Y, Liu D, Chen H, Kong MG (2016) The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun 473:1125–1132. https://doi.org/10.1016/j.bbrc.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  12. Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G (2022) Cold plasma irradiation attenuates atopic dermatitis via enhancing HIF-1alpha-induced MANF transcription expression. Front Immunol 13:941219. https://doi.org/10.3389/fimmu.2022.941219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun T, Yu S, Song X, Zhang J, Bao Q, Mei Q, Shen Q, Wang D, Ni G (2022) Cold plasma irradiation regulates inflammation and oxidative stress in human bronchial epithelial cells and human non-small cell lung carcinoma. Radiat Res 197:166–174. https://doi.org/10.1667/RADE-20-00178.1

    Article  CAS  PubMed  Google Scholar 

  14. Brany D, Dvorská D, Halasová E, Skovierová H (2020) Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci 21:2932. https://doi.org/10.3390/ijms21082932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Friedman PC (2020) Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 59:1171–1184. https://doi.org/10.1111/ijd.15110

    Article  PubMed  Google Scholar 

  16. Dai L, Tian S, Zhang J, Lu M, Zhu J, Zhao H (2021) F1012-2 induced ROS-mediated DNA damage response through activation of MAPK pathway in triple-negative breast cancer. Biomed Res Int 2021:6650045. https://doi.org/10.1155/2021/6650045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  18. Jung JM, Yoon HK, Kim SY, Yun MR, Kim GH, Lee WJ, Lee MW, Chang SE, Won CH (2023) Anticancer effect of cold atmospheric plasma in syngeneic mouse models of melanoma and colon cancer. Molecules 28:4171. https://doi.org/10.3390/molecules28104171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li W, Yu H, Ding D, Chen Z, Wang Y, Wang S, Li X, Keidar M, Zhang W (2019) Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med 130:71–81. https://doi.org/10.1016/j.freeradbiomed.2018.10.429

    Article  CAS  PubMed  Google Scholar 

  20. Ha JH, Kim YJ (2021) Photodynamic and cold atmospheric plasma combination therapy using polymeric nanoparticles for the synergistic treatment of cervical cancer. Int J Mol Sci 22:1172. https://doi.org/10.3390/ijms22031172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavares-da-Silva E, Pereira E, Pires AS, Neves AR, Braz-Guilherme C, Marques IA, Abrantes AM, Goncalves AC, Caramelo F, Silva-Teixeira R, Mendes F, Figueiredo A, Botelho MF (2021) Cold atmospheric plasma, a novel approach against bladder cancer, with higher sensitivity for the high-grade cell line. Biology (Basel) 10:41. https://doi.org/10.3390/biology10010041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee PS, Chiou YS, Chou PY, Nagabhushanam K, Ho CT, Pan MH (2021) 3′-Hydroxypterostilbene Inhibits 7,12-Dimethylbenz[a]anthracene (DMBA)/12-O-Tetradecanoylphorbol-13-Acetate (TPA)-induced mouse skin carcinogenesis. Phytomedicine 81:153432. https://doi.org/10.1016/j.phymed.2020.153432

    Article  CAS  PubMed  Google Scholar 

  23. Ni HJ, Zhang Z, Dai YD, Zhang SY (2016) Establishment of endometriosis subcutaneous model in immunodeficient nude mice. Zhonghua Yi Xue Za Zhi 96:2675–2677. https://doi.org/10.3760/cma.j.issn.0376-2491.2016.33.016

    Article  CAS  PubMed  Google Scholar 

  24. Jurikova M, Danihel L, Polak S, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118:544–552. https://doi.org/10.1016/j.acthis.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  25. Renault TT, Dejean LM, Manon S (2017) A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev 161:201–210. https://doi.org/10.1016/j.mad.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  26. Rasmussen ML, Gama V (2020) A connection in life and death: the BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. Int Rev Cell Mol Biol 353:255–284. https://doi.org/10.1016/bs.ircmb.2019.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang H, Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 21:149. https://doi.org/10.1186/s12885-021-07860-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuang CH, Yeh CL, Yeh SL, Lin ES, Wang LY, Wang YH (2016) Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-gamma associated mechanisms. J Nutr Biochem 33:45–53. https://doi.org/10.1016/j.jnutbio.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  29. Qi M, Zhao X, Fan R, Zhang X, Peng S, Xu D, Yang Y (2022) Cold atmospheric plasma suppressed mm in vivo engraftment by increasing ros and inhibiting the notch signaling pathway. Molecules 27:5832. https://doi.org/10.3390/molecules27185832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon R (2013) Skin cancer: an overview of epidemiology and risk factors. Semin Oncol Nurs 29:160–169. https://doi.org/10.1016/j.soncn.2013.06.002

    Article  PubMed  Google Scholar 

  31. LaBerge GS, Duvall E, Grasmick Z, Haedicke K, Galan A, Leverett J, Baswan S, Yim S, Pawelek J (2020) Recent advances in studies of skin color and skin cancer. Yale J Biol Med 93:69–80

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunssen A, Waldmann A, Eisemann N, Katalinic A (2017) Impact of skin cancer screening and secondary prevention campaigns on skin cancer incidence and mortality: A systematic review. J Am Acad Dermatol 76:129-139.e110. https://doi.org/10.1016/j.jaad.2016.07.045

    Article  PubMed  Google Scholar 

  33. Gina M, Schliemann S, Elsner P (2016) Immunosuppression as a possible cofactor of occupational skin cancer in an outdoor worker. J Eur Acad Dermatol Venereol 30:381–382. https://doi.org/10.1111/jdv.12815

    Article  CAS  PubMed  Google Scholar 

  34. Bennett HG, Dahl LA, Furness J, Kemp-Smith K, Climstein M (2022) Skin cancer and sun protective behaviours in water-based sports: a scoping review. Photodermatol Photoimmunol Photomed 38:197–214. https://doi.org/10.1111/phpp.12737

    Article  PubMed  Google Scholar 

  35. Taber JM, Dickerman BA, Okhovat JP, Geller AC, Dwyer LA, Hartman AM, Perna FM (2018) Skin cancer interventions across the cancer control continuum: review of technology, environment, and theory. Prev Med 111:451–458. https://doi.org/10.1016/j.ypmed.2017.12.019

    Article  PubMed  Google Scholar 

  36. Bernhardt T, Semmler ML, Schafer M, Bekeschus S, Emmert S, Boeckmann L (2019) Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev 2019:3873928. https://doi.org/10.1155/2019/3873928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kleineidam B, Nokhbehsaim M, Deschner J, Wahl G (2019) Effect of cold plasma on periodontal wound healing-an in vitro study. Clin Oral Investig 23:1941–1950. https://doi.org/10.1007/s00784-018-2643-3

    Article  PubMed  Google Scholar 

  38. Wang F, Ma H, Liu Z, Huang W, Xu X, Zhang X (2017) alpha-mangostin inhibits DMBA/TPA-induced skin cancer through inhibiting inflammation and promoting autophagy and apoptosis by regulating PI3K/Akt/mTOR signaling pathway in mice. Biomed Pharmacother 92:672–680. https://doi.org/10.1016/j.biopha.2017.05.129

    Article  CAS  PubMed  Google Scholar 

  39. King LE, Hohorst L, Garcia-Saez AJ (2023) Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 136:jcs260790. https://doi.org/10.1242/jcs.260790

    Article  CAS  PubMed  Google Scholar 

  40. Luo X, O’Neill KL, Huang K (2020) The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved. F1000Res 9:935. https://doi.org/10.12688/f1000research.25607.1

    Article  CAS  Google Scholar 

  41. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L (2019) MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 76:3207–3228. https://doi.org/10.1007/s00018-019-03180-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bassiouni W, Ali MAM, Schulz R (2021) Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 288:7162–7182. https://doi.org/10.1111/febs.15701

    Article  CAS  PubMed  Google Scholar 

  44. Guo L, Zhao Y, Liu D, Liu Z, Chen C, Xu R, Tian M, Wang X, Chen H, Kong MG (2018) Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation. Free Radic Res 52:783–798. https://doi.org/10.1080/10715762.2018.1471476

    Article  CAS  PubMed  Google Scholar 

  45. Yang X, Chen G, Yu KN, Yang M, Peng S, Ma J, Qin F, Cao W, Cui S, Nie L, Han W (2022) Correction: cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis 13:690. https://doi.org/10.1038/s41419-022-05143-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang X, Chen G, Yu KN, Yang M, Peng S, Ma J, Qin F, Cao W, Cui S, Nie L, Han W (2020) Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis 11:295. https://doi.org/10.1038/s41419-020-2459-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mi W, Wang C, Luo G, Li J, Zhang Y, Jiang M, Zhang C, Liu N, Jiang X, Yang G, Zhang L, Zhang G, Zhang Y, Fu Y (2021) Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer. Cell Death Discov 7:375. https://doi.org/10.1038/s41420-021-00677-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Z, Li H, Luo P, Yan D, Yang N, Zhang Y, Huang Y, Liu Y, Zhang L, Yan J, Zhang C (2021) UNC5B promotes vascular endothelial cell senescence via the ROS-mediated P53 pathway. Oxid Med Cell Longev 2021:5546711. https://doi.org/10.1155/2021/5546711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the fund from National Natural Science Foundation of China to Dong Wang and Guohua Ni (Grant number: 31800702, 12275317 and 11875295), Natural Science Research Project of Anhui Educational Committee to Dong Wang (Grant number: 2022AH050736), Qingdao Science and Technology Demonstration Project to Guohua Ni (Grant number: 23-7-8-smjk-2-nsh).

Author information

Authors and Affiliations

Authors

Contributions

CQL: Writing, Investigation, Formal analysis, Data curation. JJZ: Investigation, Formal analysis, Data curation. TS: Investigation, Formal analysis. LK: Investigation, Data curation. XRZ: Writing-review & editing, Supervision, Formal analysis. DW: Writing-review & editing, Supervision, Formal analysis. GHN: Writing-review & editing, Supervision, Formal analysis, Conceptualization.

Corresponding authors

Correspondence to Xinru Zhang, Dong Wang or Guohua Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing interest

The author declares that they have no competing interest.

Ethical approval

The Ethical Committee of Anhui Medical University approved this research.

Animal ethics

All animal experiments were performed according to protocols approved by the Animal Ethics Committee of Anhui Medical University (Approval number: LLSC20210791). All animals received humane care according to the criteria outlined in the Guide for the Care and Use of Laboratory Animals prepared by the National Academy of Sciences and published by the National Institutes of Health.

Consent for publication

All authors have given consents for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zha, J., Sun, T. et al. Cold atmospheric plasma attenuates skin cancer via ROS induced apoptosis. Mol Biol Rep 51, 518 (2024). https://doi.org/10.1007/s11033-024-09486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09486-6

Keywords

Navigation