Skip to main content

Advertisement

Log in

Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences.

Methods and results

SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner.

Conclusion

These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data are available from the corresponding author on reasonable request.

Abbreviations

LTP:

Low temperature plasma

ROS:

Reactive oxygen species

MAPK:

Mitogen-activated proteinkinase

Erks:

Extracellular signal-regulated kinases

NF-κB:

Nuclear factor kappa-B

PCNA:

Proliferating Cell Nuclear Antigen

BAX:

BCL2-associated X protein

BCL-2:

B-cell lymphoma-2

MMP2:

Matrix metalloproteinase 2

MMP9:

Matrix metalloproteinase 9

References

  1. Hirst AM, Frame FM, Arya M, Maitland NJ, O’Connell D (2016) Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 37:7021–7031

    CAS  PubMed  Google Scholar 

  2. Tanaka H, Mizuno M, Ishikawa K, Toyokuni S, Kajiyama H, Kikkawa F et al (2021) Cancer treatments using low-temperature plasma. Curr Med Chem 28:8549–8558

    CAS  PubMed  Google Scholar 

  3. Xu D, Luo X, Xu Y, Cui Q, Yang Y, Liu D et al (2016) The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun 473:1125–1132

    CAS  PubMed  Google Scholar 

  4. Voloaca OM, Greenhalgh CJ, Cole LM, Clench MR, Managh AJ, Haywood-Small SL (2020) Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. Rapid Commun mass spectrometry: RCM 34:e8906

    CAS  PubMed  Google Scholar 

  5. Bunz O, Mese K, Funk C, Wulf M, Bailer SM, Piwowarczyk A et al (2020) Cold atmospheric plasma as antiviral therapy - effect on human herpes simplex virus type 1. J Gen Virol 101:208–215

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eggers B, Marciniak J, Memmert S, Kramer FJ, Deschner J, Nokhbehsaim M (2020) The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro. Odontology 108:607–616

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Feizollahi E, Misra NN, Roopesh MS (2021) Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 61:666–689

    CAS  PubMed  Google Scholar 

  8. Frias E, Iglesias Y, Alvarez-Ordonez A, Prieto M, Gonzalez-Raurich M, Lopez M (2020) Evaluation of Cold Atmospheric Pressure Plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: impact on microbiological, sensorial and functional quality attributes. Food Res Int 129:108859

    CAS  PubMed  Google Scholar 

  9. Bernhardt T, Semmler ML, Schafer M, Bekeschus S, Emmert S, Boeckmann L (2019) Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxidative Medicine and Cellular Longevity

  10. Kleineidam B, Nokhbehsaim M, Deschner J, Wahl G (2019) Effect of cold plasma on periodontal wound healing-an in vitro study. Clin Oral Invest 23:1941–1950

    Google Scholar 

  11. Keidar M, Yan D, Beilis II, Trink B, Sherman JH (2018) Plasmas for treating cancer: opportunities for adaptive and self-adaptive approaches. Trends Biotechnol 36:586–593

    CAS  PubMed  Google Scholar 

  12. Ikeda JI, Tanaka H, Ishikawa K, Sakakita H, Ikehara Y, Hori M (2018) Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol Int 68:23–30

    CAS  PubMed  Google Scholar 

  13. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M (2015) Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med 79:28–44

    CAS  PubMed  Google Scholar 

  14. Vaquero J, Judee F, Vallette M, Decauchy H, Arbelaiz A, Aoudjehane L et al (2020) Cold-atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers 12

  15. Li Y, Tang T, Lee H, Song K (2021) Cold atmospheric pressure plasma-activated medium induces selective cell death in human hepatocellular carcinoma cells independently of singlet oxygen, hydrogen peroxide, nitric oxide and nitrite/nitrate. International journal of molecular sciences 22.

  16. Schneider C, Arndt S, Zimmermann JL, Li YF, Karrer S, Bosserhoff AK (2019) Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 400:111–122

    CAS  Google Scholar 

  17. Li W, Yu H, Ding D, Chen Z, Wang Y, Wang S et al (2019) Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med 130:71–81

    CAS  PubMed  Google Scholar 

  18. Golubitskaya EA, Troitskaya OS, Yelak EV, Gugin PP, Richter VA, Schweigert IV et al (2019) Cold Physical plasma decreases the viability of lung adenocarcinoma cells. Acta naturae 11:16–19

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Verloy R, Privat-Maldonado A, Smits E, Bogaerts A (2020) Cold atmospheric plasma treatment for pancreatic cancer-the importance of pancreatic stellate cells. Cancers 12

  20. Van Loenhout J, Flieswasser T, Freire Boullosa L, De Waele J, Van Audenaerde J, Marcq E et al (2019) Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers 11.

  21. Yang X, Chen G, Yu KN, Yang M, Peng S, Ma J et al (2020) Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis 11:295

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo L, Zhao Y, Liu D, Liu Z, Chen C, Xu R et al (2018) Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation. Free Radic Res 52:783–798

    CAS  PubMed  Google Scholar 

  23. Yousfi M, Merbahi N, Pathak A, Eichwald O (2014) Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam Clin Pharmacol 28:123–135

    CAS  PubMed  Google Scholar 

  24. Mahmood N, Arakelian A, Cheishvili D, Szyf M, Rabbani SA (2020) S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasis. J Cell Mol Med 24:10322–10337

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy BL, Yi M, Arun BK, Gutierrez Barrera AM, Bedrosian I (2020) Contralateral risk-reducing mastectomy in breast cancer patients who undergo multigene panel testing. Ann Surg Oncol 27:4613–4621

    PubMed  PubMed Central  Google Scholar 

  26. Co N, Iglesias D, Celestino J, Kwan S, Mok S, Schmandt R et al (2014) Loss of LKB1 in high-grade endometrial carcinoma: LKB1 is a novel transcriptional target of p53. Cancer 120:3457–3468

    CAS  PubMed  Google Scholar 

  27. Naji S, Issa K, Eid A, Iratni R, Eid AH (2019) Cadmium induces migration of colon cancer cells: roles of reactive oxygen species, P38 and Cyclooxygenase-2. Cell Physiol Biochem 52:1517–1534

    CAS  PubMed  Google Scholar 

  28. Li W, Li Y, Tian W, Han X, Zhao J, Xin Z et al (2020) 2-methylbenzoyl berbamine, a multi-targeted inhibitor, suppresses the growth of human osteosarcoma through disabling NF-kappaB, ERK and AKT signaling networks. Aging 12:15037–15049

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Libson S, Lippman M (2014) A review of clinical aspects of breast cancer. Int Rev psychiatry 26:4–15

    PubMed  Google Scholar 

  30. Jiang K, Liu P, Xu H, Liang D, Fang K, Du S et al (2020) SASH1 suppresses triple-negative breast cancer cell invasion through YAP-ARHGAP42-actin axis. Oncogene 39:5015–5030

    CAS  PubMed  Google Scholar 

  31. Green D, Eyre H, Singh A, Taylor JT, Chu J, Jeys L et al (2020) Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene 39:5553–5569

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Winerdal ME, Krantz D, Hartana CA, Zirakzadeh AA, Linton L, Bergman EA et al (2018) Urinary bladder cancer tregs suppress MMP2 and potentially regulate invasiveness. Cancer Immunol Res 6:528–538

    CAS  PubMed  Google Scholar 

  33. Qin H, Liu X, Li F, Miao L, Li T, Xu B et al (2017) PAD1 promotes epithelial-mesenchymal transition and metastasis in triple-negative breast cancer cells by regulating MEK1-ERK1/2-MMP2 signaling. Cancer Lett 409:30–41

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang ZC, Li Y, Wang KL, Wang L, You BS, Zhao DF et al (2020) miR-5089-5p suppresses castration-resistant prostate cancer resistance to enzalutamide and metastasis via miR-5089-5p/SPINK1/ MAPK/MMP9 signaling. Aging 12:14418–14433

    CAS  PubMed  PubMed Central  Google Scholar 

  35. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    PubMed  Google Scholar 

  36. Bhat TA, Chaudhary AK, Kumar S, O’Malley J, Inigo JR, Kumar R et al (2017) Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim et Biophys acta Reviews cancer 1867:58–66

    CAS  Google Scholar 

  37. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68:394–424

    Google Scholar 

  38. Chlebowski R, Anderson G, Aragaki A, Manson J, Stefanick M, Pan K et al (2020) Association of menopausal hormone therapy with breast cancer incidence and mortality during long-term follow-up of the women’s health initiative randomized clinical trials. JAMA 324:369–380

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fahad Ullah M (2019) Breast cancer: current perspectives on the disease status. Adv Exp Med Biol 1152:51–64

    CAS  PubMed  Google Scholar 

  40. Manai M, Finetti P, Mejri N, Athimni S, Birnbaum D, Bertucci F et al (2019) Inflammatory breast cancer in 210 patients: a retrospective study on epidemiological, anatomo-clinical features and therapeutic results. Mol Clin Oncol 10:223–230

    CAS  PubMed  Google Scholar 

  41. Xu X, Zhang M, Xu F, Jiang S (2020) Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 19:165

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan D, Cui H, Zhu W, Talbot A, Zhang LG, Sherman JH et al (2017) The strong cell-based hydrogen peroxide generation triggered by cold atmospheric plasma. Sci Rep 7:10831

    PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Li D, Li Y, Jiang Q, Sun R, Liu J et al (2020) Low-temperature plasma suppresses proliferation and induces apoptosis in lung cancer cells by regulating the miR-203a/BIRC5 axis. OncoTargets and therapy 13:5145–5153

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Duarte S, Panariello BHD (2020) Comprehensive biomedical applications of low temperature plasmas. Arch Biochem Biophys 693:108560

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar N, Attri P, Choi EH, Uhm HS (2015) Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Adv 5:14670–14677

    CAS  Google Scholar 

  46. Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    CAS  PubMed  Google Scholar 

  47. de la Torre AV, Junyent F, Folch J, Pelegri C, Vilaplana J, Auladell C et al (2013) PI3 k/akt inhibition induces apoptosis through p38 activation in neurons. Pharmacol Res 70:116–125

    Google Scholar 

  48. He HT, Qiao KY, Wang C, Yang WH, Xu Z, Zhang ZL et al (2021) Hydrazinocurcumin induces apoptosis of hepatocellular carcinoma cells through the p38 mapk pathway. Cts-Clinical and Translational Science 14:2075–2084

    CAS  Google Scholar 

  49. Feng XJ, Sun TZ, Bei YC, Ding S, Zheng W, Lu Y et al (2013) S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep3

Download references

Acknowledgements

None.

Funding

This research was supported by the fund from National Key R&D Program of China to Guohua Ni (grant number 2019YFC0119000), National Natural Science Foundation of China to Dong Wang, Guohua Ni and Qiying Shen (grant number 31800702, 11875295, 11535003 and 81902003), funds from Anhui Medical University to Dong Wang [grant number XJ201603 and 2017xkj003].

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, Methodology, Writing Original draft preparation, Supervision. TS: Software, Data curation Writing-Reviewing. QS: Editing. CH: Data curation. XZ: Visualization. DW: Investigation. GN: Validation.

Corresponding authors

Correspondence to Qiying Shen, Dong Wang or GuoHua Ni.

Ethics declarations

Ethical approval

The Ethical Committee of Anhui Medical University approved this research.

Consent for publication

All authors have given consents for publication.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, T., Zhang, X. et al. Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 50, 2025–2031 (2023). https://doi.org/10.1007/s11033-022-08026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08026-4

Navigation