Skip to main content
Log in

Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Acute myeloid leukaemia (AML) is a complex haematological malignancy characterised by diverse genetic alterations leading to abnormal proliferation of myeloid precursor cells. One of the most significant genetic alterations in AML involves mutations in the FLT3 gene, which plays a critical role in haematopoiesis and haematopoietic homeostasis. This review explores the current understanding of FLT3 gene mutations and isoforms and the importance of the FLT3 protein in AML. FLT3 mutations, including internal tandem duplications (FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), occur in 25–30% in AML and are associated with poor prognosis. FLT3-ITD mutations lead to constitutive activation of the FLT3 signalling pathway, promoting cell survival and proliferation. FLT3-TKD mutations affect the tyrosine kinase domain and affect AML prognosis in various ways. Furthermore, FLT3 isoforms, including shorter variants, contribute to the complexity of FLT3 biology. Additionally, nonpathological polymorphisms in FLT3 are being explored for their potential impact on AML prognosis and treatment response. This review also discusses the development of molecular treatments targeting FLT3, including first-generation and next-generation tyrosine kinase inhibitors, highlighting the challenges of resistance that often arise during therapy. The final chapter describes FLT3 protein domain rearrangements and their relevance to AML pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Saultz JN, Garzon R (2016) Acute myeloid leukemia: a concise review. J Clin Med 5(3):33. https://doi.org/10.3390/jcm5030033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Assi SA, Bonifer C, Cockerill PN (2019) Rewiring of the Transcription Factor Network in Acute myeloid leukemia. Cancer Inf 18:1176935119859863. https://doi.org/10.1177/1176935119859863

    Article  Google Scholar 

  3. Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152. https://doi.org/10.1056/NEJMra1406184

    Article  CAS  PubMed  Google Scholar 

  4. Tey SK, Lane SW (2022) Better the cure you know: why patients with AML ≥ 60 years of age should be offered early allogeneic stem cell transplantation. Blood Adv 6(5):1619–1622. https://doi.org/10.1182/bloodadvances.2021004829

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jaime-Pérez JC, Padilla-Medina JR, Fernández LT et al (2018) Outcomes of adolescents and young adults with Acute myeloid leukemia treated in a single latin American Center. Clin Lymphoma Myeloma Leuk 18(4):286–292. https://doi.org/10.1016/j.clml.2018.02.002

    Article  PubMed  Google Scholar 

  6. Hossain MJ, Xie L, Caywood EH (2015) Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data. Cancer Epidemiol 39(5):720–726. https://doi.org/10.1016/j.canep.2015.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lalayanni C, Demosthenous C, Iskas M et al (2022) Adolescents and young adults (AYA) with acute myeloid leukemia (AML): real-world long-term results and age-specific outcomes. Leuk Lymphoma 63(13):3128–3137. https://doi.org/10.1080/10428194.2022.2113527

    Article  PubMed  Google Scholar 

  8. Huber S, Baer C, Hutter S et al (2023) AML classification in the year 2023: how to avoid a babylonian confusion of languages. Leukemia 37(7):1413–1420. https://doi.org/10.1038/s41375-023-01909-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DiNardo CD, Cortes JE (2016) Mutations in AML: prognostic and therapeutic implications. Hematol Am Soc Hematol Educ Program 2016(1):348–355. https://doi.org/10.1182/asheducation-2016.1.348

    Article  Google Scholar 

  10. Johansson B, Harrison CJ (2010) Acute myeloid leukemia. Cancer Cytogenetics, 1st edn. Wiley, New York, pp 45–139. https://doi.org/10.1002/9781118010136.ch5.

    Chapter  Google Scholar 

  11. Döhner H, Wei AH, Appelbaum R et al (2022) Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 22(12):1345–1377. https://doi.org/10.1182/blood.2022016867

    Article  CAS  Google Scholar 

  12. Patnaik MM (2018) The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma 59(10):2273–2286. https://doi.org/10.1080/10428194.2017.1399312

    Article  CAS  PubMed  Google Scholar 

  13. Lim SH, Dubielecka PM, Raghunathan VM (2017) Molecular targeting in acute myeloid leukemia. J Transl Med 15(1):183. https://doi.org/10.1186/s12967-017-1281-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao JC, Agarwal S, Ahmad H et al (2022) A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 52:100905. https://doi.org/10.1016/j.blre.2021.100905

    Article  CAS  PubMed  Google Scholar 

  15. Meraj F, Jamal S, Javed O et al (2023) Cytogenetic profiling in paediatric Acute Leukaemia; a Report on 746 newly diagnosed paediatric cases analyzing the spectrum of recurring chromosomal rearrangements in B cell lymphoblastic and acute myeloid leukaemia. J Ayub Med Coll Abbottabad 35(2):196–202. https://doi.org/10.55519/JAMC-02-11634

    Article  PubMed  Google Scholar 

  16. Yu J, Li Y, Zhang D, Wan D, Jiang Z (2020) Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 9:4. https://doi.org/10.1186/s40164-020-00161-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kikushige Y, Yoshimoto G, Miyamoto T et al (2008) Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 180(11):7358–7367. https://doi.org/10.4049/jimmunol.180.11.7358

    Article  CAS  PubMed  Google Scholar 

  18. Blom B, Spits H (2006) Development of human lymphoid cells. Annu Rev Immunol 24:287–320. https://doi.org/10.1146/annurev.immunol.24.021605.090612

    Article  CAS  PubMed  Google Scholar 

  19. Hernández-Barrientos D, Pelayo R, Mayani H (2023) The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 114(5):404–420. https://doi.org/10.1093/jleuko/qiad075

    Article  PubMed  Google Scholar 

  20. Fenski R, Flesch K, Serve S et al (2000) Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 108(2):322–330. https://doi.org/10.1046/j.1365-2141.2000.01831.x

    Article  CAS  PubMed  Google Scholar 

  21. Okabe A, Guirales F, Zhao D, Tirado CA (2021) FLT3 gene involvement in B-cell Acute Lymphoblastic Leukemia (B-ALL). J Assoc Genet Technol 47(1):6–14

    PubMed  Google Scholar 

  22. Rosnet O, Bühring HJ, deLapeyrière O et al (1996) Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 95(3–4):218–223. https://doi.org/10.1159/000203881

    Article  CAS  PubMed  Google Scholar 

  23. Sakaguchi M, Yamaguchi H, Kuboyama M et al (2019) Significance of FLT3-tyrosine kinase domain mutation as a prognostic factor for acute myeloid leukemia. Int J Hematol 110(5):566–574. https://doi.org/10.1007/s12185-019-02720-z

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto Y, Kiyoi H, Nakano Y et al (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97(8):2434–2439. https://doi.org/10.1182/blood.v97.8.2434

    Article  CAS  PubMed  Google Scholar 

  25. Rosnet O, Schiff C, Pébusque MJ et al (1993) Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119

    Article  CAS  PubMed  Google Scholar 

  26. Smith CC, Wang Q, Chin CS et al (2012) Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397):260–263. https://doi.org/10.1038/nature11016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lejman M, Dziatkiewicz I, Jurek M (2022) Straight to the point-the novel strategies to Cure Pediatric AML. Int J Mol Sci 23(4):1968. https://doi.org/10.3390/ijms23041968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazi JU, Rönnstrand L (2019) FMS-like tyrosine kinase 3/FLT3: from Basic Science to Clinical implications. Physiol Rev 99(3):1433–1466. https://doi.org/10.1152/physrev.00029.2018

    Article  CAS  PubMed  Google Scholar 

  29. Cumbo C, Tarantini F, Anelli L et al (2022) FLT3 mutational analysis in acute myeloid leukemia: advantages and pitfalls with different approaches. Blood Rev 54:100928. https://doi.org/10.1016/j.blre.2022.100928

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda S, Broxmeyer HE, Pelus LM (2005) Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 105(8):3117–3126. https://doi.org/10.1182/blood-2004-04-1440

    Article  CAS  PubMed  Google Scholar 

  31. Gebru MT, Wang HG (2020) Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 13(1):155. https://doi.org/10.1186/s13045-020-00992-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heiss E, Masson K, Sundberg C et al (2006) Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of src family kinases and the protein tyrosine phosphatase SHP2. Blood 108(5):1542–1550. https://doi.org/10.1182/blood-2005-07-008896

    Article  CAS  PubMed  Google Scholar 

  33. Steelman LS, Franklin RA, Abrams SL et al (2011) Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 25(7):1080–1094. https://doi.org/10.1038/leu.2011.66

    Article  CAS  PubMed  Google Scholar 

  34. Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5):1532–1542. https://doi.org/10.1182/blood-2002-02-0492

    Article  CAS  PubMed  Google Scholar 

  35. Griffith J, Black J, Faerman C et al (2004) The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13(2):169–178. https://doi.org/10.1016/s1097-2765(03)00505-7

    Article  CAS  PubMed  Google Scholar 

  36. Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17(1):58. https://doi.org/10.1186/s12943-018-0782-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levis M, Small D (2003) FLT3: ITDoes matter in leukemia. Leukemia 17(9):1738–1752. https://doi.org/10.1038/sj.leu.2403099

    Article  CAS  PubMed  Google Scholar 

  38. Small D (2006) FLT3 mutations: biology and treatment. Hematol Am Soc Hematol Educ Program 178 – 84. https://doi.org/10.1182/asheducation-2006.1.178

    Article  Google Scholar 

  39. Kiyoi H, Kawashima N, Ishikawa Y (2020) FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci 111(2):312–322. https://doi.org/10.1111/cas.14274

    Article  CAS  PubMed  Google Scholar 

  40. Ambinder AJ, Levis M (2021) Potential targeting of FLT3 acute myeloid leukemia. Haematologica 106(3):671–681. https://doi.org/10.3324/haematol.2019.240754

    Article  CAS  PubMed  Google Scholar 

  41. Jahn N, Terzer T, Sträng E et al (2020) Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication. Blood Adv 4(24):6342–6352. https://doi.org/10.1182/bloodadvances.2020002673

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lo Iudice G, De Bellis E, Savi A et al (2022) Molecular dissection of a hyper-aggressive CBFB-MYH11/FLT3-ITD-positive acute myeloid leukemia. J Transl Med 20(1):311. https://doi.org/10.1186/s12967-022-03486-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Todde G, Friedman R (2019) Conformational modifications induced by internal tandem duplications on the FLT3 kinase and juxtamembrane domains. Phys Chem Chem Phys 21(34):18467–18476. https://doi.org/10.1039/c9cp02938a

    Article  CAS  PubMed  Google Scholar 

  44. Kellner F, Keil A, Schindler K et al (2020) Wild-type FLT3 and FLT3 ITD exhibit similar ligand-induced internalization characteristics. J Cell Mol Med 24(8):4668–4676. https://doi.org/10.1111/jcmm.15132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niswander LM, Graff ZT, Chien CD et al (2023) Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 108(2):457–471. https://doi.org/10.3324/haematol.2022.281456

    Article  CAS  PubMed  Google Scholar 

  46. Tao S, Wang C, Chen Y et al (2019) Prognosis and outcome of patients with acute myeloid leukemia based on FLT3-ITD mutation with or without additional abnormal cytogenetics. Oncol Lett 18(6):6766–6774. https://doi.org/10.3892/ol.2019.11051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim Y, Lee GD, Park J et al (2015) Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J 5(8):e336. https://doi.org/10.1038/bcj.2015.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castaño-Bonilla T, Alonso-Dominguez JM, Barragán E et al (2021) Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens. Sci Rep 11(1):20745. https://doi.org/10.1038/s41598-021-00050-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lagunas-Rangel FA, Chávez-Valencia V (2017) FLT3-ITD and its current role in acute myeloid leukaemia. Med Oncol 34(6):114. https://doi.org/10.1007/s12032-017-0970-x

    Article  CAS  PubMed  Google Scholar 

  50. Tamburini J, Mouche S, Larrue C et al (2023) Very short insertions in the FLT3 gene are of therapeutic significance in acute myeloid leukemia. Blood Adv 7(24):7576–7580. https://doi.org/10.1182/bloodadvances.2023011916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M (2022) Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell 35(4):1304–1305. https://doi.org/10.1007/s13577-022-00718-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tien FM, Tsai CH, Huang SC et al (2022) Distinct clinico-biological features in AML patients with low allelic ratio FLT3-ITD: role of allogeneic stem cell transplantation in first remission. Bone Marrow Transpl 57(1):95–105. https://doi.org/10.1038/s41409-021-01454-z

    Article  CAS  Google Scholar 

  53. Aitken MJL, Ravandi F, Patel KP, Short NJ (2021) Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J Hematol Oncol 14(1):137. https://doi.org/10.1186/s13045-021-01148-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marhäll A, Heidel F, Fischer T, Rönnstrand L (2018) Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol 97(5):773–780. https://doi.org/10.1007/s00277-018-3245-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mer AS, Heath EM, Madani Tonekaboni SA et al (2021) Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nat Commun 12(1):1054. https://doi.org/10.1038/s41467-021-21233-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lachowiez CA, Reville PK, Kantarjian H et al (2022) Contemporary outcomes in IDH-mutated acute myeloid leukemia: the impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol 97(11):1443–1452. https://doi.org/10.1002/ajh.26694

    Article  CAS  PubMed  Google Scholar 

  57. Reikvam H (2023) Revisiting the prognostic role of FLT3 mutations in acute myelogenous leukemia. Expert Rev Hematol 16(5):317–323. https://doi.org/10.1080/17474086.2023.2202849

    Article  CAS  PubMed  Google Scholar 

  58. Döhner K, Thiede C, Jahn N et al (2020) Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 135(5):371–380. https://doi.org/10.1182/blood.2019002697

    Article  PubMed  PubMed Central  Google Scholar 

  59. Varelas C, Papalexandri A, Iskas M et al (2023) PB1894: NPM1 mutated Acute myeloid leukemia: the co-mutation patterns may be Associated with Prognosis. Hemasphere 7(Suppl):e756808d. https://doi.org/10.1097/01.HS9.0000974400.75680.8d

    Article  PubMed Central  Google Scholar 

  60. Hammer ASB, Juul-Dam KL, Sandahl JD et al (2023) Hypodiploidy has unfavorable impact on survival in pediatric acute myeloid leukemia: an I-BFM Study Group collaboration. Blood Adv 7(6):1045–1055. https://doi.org/10.1182/bloodadvances.2022008251

    Article  CAS  PubMed  Google Scholar 

  61. Stasik S, Kramer M, Zukunft S et al (2022) Point mutations in the FLT3-ITD region are rare but recurrent alterations in adult AML and Associated with concomitant KMT2A-PTD. Front Oncol 12:862991. https://doi.org/10.3389/fonc.2022.862991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahmoudi A, Moradabadi A, Noroozi-Aghideh A (2021) Comparison of high-resolution melting analysis with direct sequencing for detection of FLT3-TKD, FLT3-ITD and WT1 mutations in acute myeloid leukemia. Cancer Treat Res Commun 28:100432. https://doi.org/10.1016/j.ctarc.2021.100432

    Article  PubMed  Google Scholar 

  63. Whitman SP, Ruppert AS, Radmacher MD et al (2008) FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 111(3):1552–1559. https://doi.org/10.1182/blood-2007-08-107946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shimony S, Stahl M, Stone RM (2023) Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 98(3):502–526. https://doi.org/10.1002/ajh.26822

    Article  PubMed  Google Scholar 

  65. Short NJ, Kantarjian H, Ravandi F, Daver N (2019) Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol 10:2040620719827310. https://doi.org/10.1177/2040620719827310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carter JL, Hege K, Yang J et al (2020) Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 5(1):288. https://doi.org/10.1038/s41392-020-00361-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665. https://doi.org/10.1038/nrc1169

    Article  CAS  PubMed  Google Scholar 

  68. Fatemeh S (2023) Early fate decissions in hematopoietic stem and progenitor cells. Through the lens of genomic and functional assays. Dissertation, Lund University

  69. Lu PCW, Shahbaz S, Winn LM (2020) Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J Appl Toxicol 40(8):1018–1032. https://doi.org/10.1002/jat.3961

    Article  CAS  PubMed  Google Scholar 

  70. Dlamini Z, Shoba B, Hull R (2020) Splicing machinery genomics events in acute myeloid leukaemia (AML): in search for therapeutic targets, diagnostic and prognostic biomarkers. Am J Cancer Res 10(9):2690–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  71. https://databases.lovd.nl/shared/variants/FLT3/unique - last updated June 15th 2021

  72. Marrero RJ, Cao X, Wu H et al (2023) SAMHD1 single nucleotide polymorphisms impact outcome in children with newly diagnosed acute myeloid leukemia. Blood Adv 7(11):2538–2550. https://doi.org/10.1182/bloodadvances.2022009088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alsheikh T, Ameer T, NjmEldin A et al (2023) June Twenty novel nsSNPs may affect FLT3 gene leading to Acute Myeloid Leukemia (AML) using in silico analysis. Biorxiv - The Preprint server for biology. https://www.biorxiv.org/content/https://doi.org/10.1101/2023.06.24.546344v1.full Accessed 26

  74. Rasekh EO, Amin EA, Yassa ME et al (2022) The Prognostic Significance of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase on the outcome of adult Acute myeloid leukemia patients with Cytarabine Based Chemotherapy. Int J Hematol 33(1):081–092

    Google Scholar 

  75. Kolonen A, Sinisalo M, Huhtala H et al (2022) Efficacy of conventional-dose cytarabine, idarubicin and thioguanine versus intermediate-dose cytarabine and idarubicin in the induction treatment of acute myeloid leukemia: long-term results of the prospective randomized nationwide AML-2003 study by the Finnish Leukemia Group. Eur J Haematol 109(3):257–270. https://doi.org/10.1111/ejh.13805

    Article  CAS  PubMed  Google Scholar 

  76. Alarcón-Payer C, Sánchez Suárez MDM, Martín Roldán A et al (2022) Impact of genetic polymorphisms and biomarkers on the effectiveness and toxicity of treatment of chronic myeloid leukemia and Acute Myeloid Leukemia. J Pers Med 12(10):1607. https://doi.org/10.3390/jpm12101607

    Article  PubMed  PubMed Central  Google Scholar 

  77. Razumovskaya E, Masson K, Khan R, Bengtsson S, Rönnstrand L (2009) Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Exp Hematol 37(8):979–989. https://doi.org/10.1016/j.exphem.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  78. Georgoulia PS, Bjelic S, Friedman R (2020) Deciphering the molecular mechanism of FLT3 resistance mutations. FEBS J 287(15):3200–3220. https://doi.org/10.1111/febs.15209

    Article  CAS  PubMed  Google Scholar 

  79. Verstraete K, Vandriessche G, Januar M et al (2011) Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 118(1):60–68. https://doi.org/10.1182/blood-2011-01-329532

    Article  CAS  PubMed  Google Scholar 

  80. Morrison P, Takishima K, Rosner MR (1993) Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase. J Biol Chem 268(21):15536–15543

    Article  CAS  PubMed  Google Scholar 

  81. Ali AM, Salih GF (2023) Molecular and clinical significance of FLT3, NPM1, DNMT3A and TP53 mutations in acute myeloid leukemia patients. Mol Biol Rep 50(10):8035–8048. https://doi.org/10.1007/s11033-023-08680-2

    Article  CAS  PubMed  Google Scholar 

  82. Ding Y, Smith GH, Deeb K, Schneider T, Campbell A, Zhang L (2022) Revealing molecular architecture of FLT3 internal tandem duplication: development and clinical validation of a web-based application to generate accurate nomenclature. Int J Lab Hematol 44(5):918–927. https://doi.org/10.1111/ijlh.13930

    Article  PubMed  Google Scholar 

  83. Guijarro F, López-Guerra M, Morata J et al (2023) Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 7(19):5799–5811. https://doi.org/10.1182/bloodadvances.2023009742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eckardt JN, Bornhäuser M, Wendt K, Middeke JM (2020) Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 4(23):6077–6085. https://doi.org/10.1182/bloodadvances.2020002997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Papaemmanuil E, Gerstung M, Bullinger L et al (2016) Genomic classification and prognosis in Acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/NEJMoa1516192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A (2020) FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia 34(3):682–696. https://doi.org/10.1038/s41375-019-0694-3

    Article  PubMed  Google Scholar 

  87. Weisberg E, Roesel J, Furet P et al (2010) Antileukemic effects of Novel First- and second-generation FLT3 inhibitors: structure-Affinity comparison. Genes Cancer 1(10):1021–1032. https://doi.org/10.1177/1947601910396505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ran F, Xie X, Wu Q et al (2023) Development of novel hydrazidoarylaminopyrimidine-based BTK/FLT3 dual inhibitors with potent in vivo anti-hematological malignancies effects. Eur J Med Chem 245(Pt 1):114913. https://doi.org/10.1016/j.ejmech.2022.114913

    Article  CAS  PubMed  Google Scholar 

  89. Grimwade D, Ivey A, Huntly BJ (2016) Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 127(1):29–41. https://doi.org/10.1182/blood-2015-07-604496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ke YY, Singh VK, Coumar MS et al (2015) Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep 5:11702. https://doi.org/10.1038/srep11702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jahn N, Jahn E, Saadati M et al (2022) Genomic landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial. Leukemia 36(9):2218–2227. https://doi.org/10.1038/s41375-022-01650-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fiskus W, Sharma S, Saha S et al (2015) Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia 29(6):1267–1278. https://doi.org/10.1038/leu.2014.340

    Article  CAS  PubMed  Google Scholar 

  93. Daver N, Cortes J, Ravandi F et al (2015) Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood 125(21):3236–3245. https://doi.org/10.1182/blood-2014-10-605808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Larrosa-Garcia M, Baer MR (2017) FLT3 inhibitors in Acute myeloid leukemia: current status and future directions. Mol Cancer Ther 16(6):991–1001. https://doi.org/10.1158/1535-7163.MCT-16-0876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rodrigues ACBDC, Costa RGA, Silva SLR et al (2021) Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 160:103277. https://doi.org/10.1016/j.critrevonc.2021.103277

    Article  PubMed  Google Scholar 

  96. Lagunas-Rangel FA (2023) DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: implications for clonal evolution and disease progression. Hematol Oncol 41(1):26–38. https://doi.org/10.1002/hon.3076

    Article  CAS  PubMed  Google Scholar 

  97. Kishtagari A, Levine RL (2021) The role of somatic mutations in Acute myeloid leukemia pathogenesis. Cold Spring Harb Perspect Med 11(4):a034975. https://doi.org/10.1101/cshperspect.a034975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beitinjaneh A, Jang S, Roukoz H, Majhail NS (2010) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res 34(7):831–836. https://doi.org/10.1016/j.leukres.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  99. Zheng R, Levis M, Piloto O et al (2004) FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 103(1):267–274. https://doi.org/10.1182/blood-2003-06-1969

    Article  CAS  PubMed  Google Scholar 

  100. Kuchenbauer F, Kern W, Schoch C et al (2005) Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 90(12):1617–1625

    CAS  PubMed  Google Scholar 

  101. Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L (2020) Mechanisms of Leukemia Immune Evasion and their role in Relapse after Haploidentical hematopoietic cell transplantation. Front Immunol 11:147. https://doi.org/10.3389/fimmu.2020.00147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arai Y, Chi S, Minami Y, Yanada M (2022) FLT3-targeted treatment for acute myeloid leukemia. Int J Hematol 116(3):351–363. https://doi.org/10.1007/s12185-022-03374-0

    Article  CAS  PubMed  Google Scholar 

  103. Ferng TT, Terada D, Ando M et al (2022) The irreversible FLT3 inhibitor FF-10101 is active against a diversity of FLT3 inhibitor resistance mechanisms. Mol Cancer Ther 21(5):844–854. https://doi.org/10.1158/1535-7163.MCT-21-0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was checked by language proofreading, we can provide certificate if requested.

Funding

The grant SVV no. 260 651, GAUK no. 350322, and the Cooperatio program supported the work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the intellectual content of this review and its writing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Diana Macečková.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macečková, D., Vaňková, L., Holubová, M. et al. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol Biol Rep 51, 521 (2024). https://doi.org/10.1007/s11033-024-09452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09452-2

Keywords

Navigation