Skip to main content
Log in

Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart Disease and Stroke Statistics-2022 update: a Report from the American Heart Association. Circulation 145(8):e153–e639

    Article  PubMed  Google Scholar 

  2. Sandoval Y, Jaffe AS (2019) Type 2 myocardial infarction: JACC Review topic of the Week. J Am Coll Cardiol 73(14):1846–1860

    Article  PubMed  Google Scholar 

  3. Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D et al (2022) European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 43(8):716–799

    Article  PubMed  Google Scholar 

  4. Huang S, Frangogiannis NG (2018) Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 175(9):1377–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Erne P, Iglesias JF, Urban P, Eberli FR, Rickli H, Simon R et al (2017) Left bundle-branch block in patients with acute myocardial infarction: presentation, treatment, and trends in outcome from 1997 to 2016 in routine clinical practice. Am Heart J 184:106–113

    Article  PubMed  Google Scholar 

  6. Hoagland DT, Santos W, Poelzing S, Gourdie RG (2019) The role of the gap junction perinexus in cardiac conduction: potential as a novel anti-arrhythmic drug target. Prog Biophys Mol Biol 144:41–50

    Article  CAS  PubMed  Google Scholar 

  7. Mitra M, Coller HA (2016) RNAs that make a heart beat. Ann Transl Med 4(23):469

    Article  PubMed  PubMed Central  Google Scholar 

  8. Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodríguez-Sinovas A, Sánchez JA, Valls-Lacalle L, Consegal M, Ferreira-González I (2021) Connexins in the heart: regulation, function and involvement in Cardiac Disease. Int J Mol Sci 22(9):4413

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dhein S, Salameh A (2021) Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 10(9):2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leithe E, Mesnil M, Aasen T (2018) The connexin 43 C-terminus: a tail of many tales. Biochim Biophys Acta Biomembr 1860(1):48–64

    Article  CAS  PubMed  Google Scholar 

  12. de Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE et al (1988) Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77(3):589–606

    Article  PubMed  Google Scholar 

  13. Peters NS, Coromilas J, Severs NJ, Wit AL (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996

    Article  CAS  PubMed  Google Scholar 

  14. Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A et al (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104:1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirschhäuser C, Lissoni A, Görge PM, Lampe PD, Heger J, Schlüter KD et al (2021) Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 116(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee CC, Chen WT, Chen SY, Lee TM (2021) Dapagliflozin attenuates arrhythmic vulnerabilities by regulating connexin43 expression via the AMPK pathway in post-infarcted rat hearts. Biochem Pharmacol 192:114674

    Article  CAS  PubMed  Google Scholar 

  17. Zhou P, Yang X, Yang D, Jiang X, Wang WE, Yue R et al (2021) Integrin-linked kinase activation prevents ventricular Arrhythmias Induced by Ischemia/Reperfusion Via Inhibition of Connexin 43 remodeling. J Cardiovasc Transl Res 14(4):610–618

    Article  PubMed  Google Scholar 

  18. Lee CY, Choi JW, Shin S, Lee J, Seo HH, Lim S et al (2017) Interaction of small G protein signaling modulator 3 with connexin 43 contributes to myocardial infarction in rat hearts. Biochem Biophys Res Commun 491(2):429–435

    Article  CAS  PubMed  Google Scholar 

  19. Qin W, Zhang L, Li Z, Xiao D, Zhang Y, Yang H et al (2020) Metoprolol protects against myocardial infarction by inhibiting miR-1 expression in rats. J Pharm Pharmacol 72(1):76–83

    Article  CAS  PubMed  Google Scholar 

  20. Yao J, Ke J, Zhou Z, Tan G, Yin Y, Liu M et al (2019) Combination of HGF and IGF-1 promotes connexin 43 expression and improves ventricular arrhythmia after myocardial infarction through activating the MAPK/ERK and MAPK/p38 signaling pathways in a rat model. Cardiovasc Diagn Ther 9(4):346–354

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhai H, Dai W, Wang Y (2018) Metoprolol protects cardiomyocytes in rabbit model of heart failure by regulating Cx43. Exp Ther Med 15(2):1902–1905

    CAS  PubMed  Google Scholar 

  22. Ke J, Zhu C, Zhang Y, Zhang W, Zhang W (2020) Anti-arrhythmic effects of Linalool via Cx43 expression in a rat model of myocardial infarction. Front Pharmacol 11:926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macia E, Dolmatova E, Cabo C, Sosinsky AZ, Dun W, Coromilas J et al (2011) Characterization of gap junction remodeling in epicardial border zone of healing canine infarcts and electrophysiological effects of partial reversal by rotigaptide. Circ Arrhythm Electrophysiol 4(3):344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valls-Lacalle L, Negre-Pujol C, Rodríguez C, Varona S, Valera-Cañellas A, Consegal M et al (2019) Opposite effects of Moderate and Extreme Cx43 Deficiency in conditional Cx43-Deficient mice on angiotensin II-Induced Cardiac Fibrosis. Cells 8(10):1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valls-Lacalle L, Consegal M, Ruiz-Meana M, Benito B, Inserte J, Barba I et al (2020) Connexin 43 Deficiency is Associated with reduced myocardial scar size and attenuated TGFbeta1 signaling after transient coronary occlusion in conditional knock-out mice. Biomolecules 10(4):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martins-Marques T, Catarino S, Marques C, Matafome P, Ribeiro-Rodrigues T, Baptista R et al (2015) Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie 112:196–201

    Article  CAS  PubMed  Google Scholar 

  27. Martins-Marques T, Catarino S, Zuzarte M, Marques C, Matafome P, Pereira P et al (2015) Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes. Biochem J 467(2):231–245

    Article  CAS  PubMed  Google Scholar 

  28. Hood AR, Ai X, Pogwizd SM (2017) Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 107:52–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z et al (2019) Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 114(5):40

    Article  PubMed  Google Scholar 

  30. Yi J, Duan H, Chen K et al (2022) Cardiac electrophysiological changes and downregulated Connexin 43 prompts reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in isolated rat hearts. J Cardiovasc Transl Res 15(6):1464–1473

    Article  PubMed  Google Scholar 

  31. Ciaccio EJ, Ashikaga H, Coromilas J, Hopenfeld B, Cervantes DO, Wit AL et al (2014) Model of bipolar electrogram fractionation and conduction block associated with activation wavefront direction at infarct border zone lateral isthmus boundaries. Circ Arrhythm Electrophysiol 7(1):152–163

    Article  PubMed  Google Scholar 

  32. Savi M, Bocchi L, Rossi S, Frati C, Graiani G, Lagrasta C et al (2016) Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. Am J Physiol Heart Circ Physiol 310(11):H1622–H1648

    Article  PubMed  Google Scholar 

  33. Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A et al (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104(9):1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou J, Wang L, Hou J, Guo T, Xing Y, Zheng S et al (2015) Peroxisome proliferator-activated receptor Gamma promotes mesenchymal stem cells to Express Connexin43 via the inhibition of TGF-beta1/Smads signaling in a rat model of myocardial infarction. Stem Cell Rev Rep 11(6):885–899

    Article  CAS  PubMed  Google Scholar 

  35. Xiao S, Shimura D, Baum R, Hernandez DM, Agvanian S, Nagaoka Y et al (2020) Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. J Clin Invest 130(9):4858–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palatinus JA, Valdez S, Taylor L, Whisenant C, Selzman CH, Drakos SG et al (2023) GJA1-20k rescues Cx43 localization and arrhythmias in Arrhythmogenic Cardiomyopathy. Circ Res 132(6):744–746

    Article  CAS  PubMed  Google Scholar 

  37. Wang WE, Li L, Xia X, Fu W, Liao Q, Lan C et al (2017) Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic Injury. Circulation 136(9):834–848

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martins-Marques T, Catarino S, Gonçalves A, Miranda-Silva D, Gonçalves L, Antunes P et al (2020) EHD1 modulates Cx43 gap Junction Remodeling Associated with Cardiac diseases. Circ Res 126(10):e97–e113

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Liu J, Hu C, Wei X, Han L, Zhu A et al (2023) Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury. Chin Med J (Engl) 136(11):1349–1357

    Article  CAS  PubMed  Google Scholar 

  40. Colussi C, Rosati J, Straino S, Spallotta F, Berni R, Stilli D et al (2011) Nε-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart. Proc Natl Acad Sci U S A 108(7):2795–2800

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC et al (2017) Connexins in Cardiovascular and Neurovascular Health and Disease: pharmacological implications. Pharmacol Rev 69(4):396–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Axelsen LN, Calloe K, Holstein-Rathlou NH, Nielsen MS (2013) Managing the complexity of communication: regulation of gap junctions by post-translational modification. Front Pharmacol 4:130

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raimann FJ, Dröse S, Bonke E, Schneider L, Tybl E, Wittig I et al (2019) TLR2-Dependent reversible oxidation of Connexin 43 at Cys260 modifies Electrical Coupling after experimental myocardial Ischemia/Reperfusion. J Cardiovasc Transl Res 12(5):478–487

    Article  PubMed  Google Scholar 

  44. Zhang M, Gu WW, Hong XY (2018) Involvement of Endothelin 1 in Remote Preconditioning-Induced Cardioprotection through connexin 43 and Akt/GSK-3beta signaling pathway. Sci Rep 8(1):10941

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Aquaro GD, Di Paolo M, Guidi B, Ghabisonia K, Pucci A, Aringheri G et al (2021) Post-mortem CMR in a model of sudden death due to myocardial ischemia: validation with connexin-43. Eur Radiol 31(11):8098–8107

    Article  CAS  PubMed  Google Scholar 

  46. Totland MZ, Rasmussen NL, Knudsen LM, Leithe E (2020) Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 77(4):573–591

    Article  CAS  PubMed  Google Scholar 

  47. Zhang XM, Liu YL, Cai Y, Hao Y, Kang S (2023) LRP6-mediated phosphorylation of connexin43 in myocardial infarction. iScience 26(3):106160

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dunn CA, Su V, Lau AF, Lampe PD (2012) Activation of akt, not connexin 43 protein ubiquitination, regulates gap junction stability. J Biol Chem 287(4):2600–2607

    Article  CAS  PubMed  Google Scholar 

  49. Ai X, Yan J, Pogwizd SM (2021) Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 86:110070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakurai T, Tsuchida M, Lampe PD, Murakami M (2013) Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance. Exp Cell Res 319(14):2152–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D (2021) Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 28(2):591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leykauf K, Salek M, Bomke J et al (2006) Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 119(Pt 17):3634–3642

    Article  CAS  PubMed  Google Scholar 

  53. Martins-Marques T, Catarino S, Marques C et al (2015) Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie 112:196–201

    Article  CAS  PubMed  Google Scholar 

  54. Basheer WA, Harris BS, Mentrup HL et al (2015) Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J Mol Cell Cardiol 88:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Popolo A, Morello S, Sorrentino R, Pinto A (2013) Antiadrenergic effect of adenosine involves connexin 43 turn-over in H9c2 cells. Eur J Pharmacol 715(1–3):56–61

    Article  CAS  PubMed  Google Scholar 

  56. Fykerud TA, Knudsen LM, Totland MZ et al (2016) Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding. Cell Cycle 15(21):2943–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen VC, Kristensen AR, Foster LJ, Naus CC (2012) Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control. J Proteome Res 11(12):6134–6146

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Zhang W, Luo J et al (2023) TRIM21 deficiency protects against atrial inflammation and remodeling post myocardial infarction by attenuating oxidative stress. Redox Biol 62:102679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vertegaal ACO (2022) Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 23(11):715–731

    Article  CAS  PubMed  Google Scholar 

  60. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K + channel K2P1. Cell 121(1):37–47

    Article  CAS  PubMed  Google Scholar 

  62. Qi Y, Wang J, Bomben VC et al (2014) Hyper-SUMOylation of the Kv7 potassium channel diminishes the M-current leading to seizures and sudden death. Neuron 83(5):1159–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kjenseth A, Fykerud TA, Sirnes S et al (2012) The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation. J Biol Chem 287(19):15851–15861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shen Y, Li Y, Ma X, Wan Q, Jiang Z, Liu Y, Zhang D, Liu X, Wu W (2018) Connexin 43 SUMOylation improves gap junction functions between liver cancer stem cells and enhances their sensitivity to HSVtk/GCV. Int J Oncol 52(3):872–880

    CAS  PubMed  Google Scholar 

  65. Cheng J, Sun C, Zhang J, Zou Q, Hao Q, Xue Y (2019) The Protective effects of Preconditioning with Dioscin on Myocardial Ischemia/Reperfusion-Induced ventricular arrhythmias by Increasing Connexin 43 expression in rats. J Cardiovasc Pharmacol Ther 24(3):262–268

    Article  CAS  PubMed  Google Scholar 

  66. Li B, Xu L, Liu J, Zhou M, Jiang X (2023) Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling. Biomed Pharmacother 165:115083

    Article  CAS  PubMed  Google Scholar 

  67. Chen T, Kong B, Shuai W, Gong Y, Zhang J, Huang H (2023) Vericiguat alleviates ventricular remodeling and arrhythmias in mouse models of myocardial infarction via CaMKII signaling. Life Sci 334:122184

    Article  CAS  PubMed  Google Scholar 

  68. Jiang LP, Lin JJ, Zhuang TP, Wang WW, Wu HZ, Zhang FL (2020) Effects of ivabradine on ventricular electrophysiological remodeling after myocardial infarction in rats. Arch Med Sci 19(5):1497–1507

    Article  PubMed  PubMed Central  Google Scholar 

  69. Su XL, Wang SH, Komal S, Cui LG, Ni RC, Zhang LR et al (2022) The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1beta/p38 MAPK pathway. Acta Pharmacol Sin 43(9):2289–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu SJ, Lin ZH, Lin YZ, Rao ZH, Lin JF, Wu LP et al (2020) Dexmedetomidine exerted anti-arrhythmic effects in Rat with ischemic cardiomyopathy via Upregulation of Connexin 43 and reduction of fibrosis and inflammation. Front Physiol 11:33

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Liu X, Yang R, Bai W, Xu X, Bi F, Hao Y et al (2020) Involvement of amylin B-H2S-connexin 43 signaling pathway in vascular dysfunction and enhanced ischemia-reperfusion-induced myocardial injury in diabetic rats. Biosci Rep 40(6):BSR20194154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pecoraro M, Marzocco S, Popolo A (2021) Diazoxide needs mitochondrial Connexin43 to exert its Cytoprotective Effect in a Cellular Model of CoCl2-Induced Hypoxia. Int J Mol Sci 22(21):11599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang M, Smith K, Yu Q, Miller C, Singh K, Sen CK (2019) Mitochondrial connexin 43 in sex-dependent myocardial responses and estrogen-mediated cardiac protection following acute ischemia/reperfusion injury. Basic Res Cardiol 115(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Elgenaidi IS, Spiers JP (2019) Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: a potential therapeutic target? Pharmacol Ther 198:68–89

    Article  CAS  PubMed  Google Scholar 

  75. Huang Y, Ding HS, Song T, Chen YT, Wang T, Tang YH et al (2021) Abrogation of CC chemokine receptor 9 ameliorates ventricular electrical remodeling in mice after myocardial infarction. Front Cardiovasc Med 8:716219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang W, Tayier B, Guan L, Yan F, Mu Y (2023) Optimization of the cotransfection of SERCA2a and Cx43 genes for myocardial infarction complications. Life Sci 331:122067

    Article  CAS  PubMed  Google Scholar 

  77. Zheng L, Spagnol G, Gandhi DR, Sharma K, Kumar V, Patel KP et al (2023) Inhibition of Pyk2 improves Cx43 intercalated disc localization, infarct size, and cardiac function in rats with heart failure. Circ Heart Fail 16(8):e010294

    Article  CAS  PubMed  Google Scholar 

  78. Chen WT, Chen SY, Wu DW, Lee CC, Lee TM (2020) Effect of icosapent ethyl on susceptibility to ventricular arrhythmias in postinfarcted rat hearts: role of GPR120- mediated connexin43 phosphorylation. J Cell Mol Med 24(16):9267–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82370342) and Natural Science Foundation of Jiangsu Province (No. BK20231145).

Author information

Authors and Affiliations

Authors

Contributions

F.Y. and X.Z. wrote the main manuscript text and H.L. prepared Figs. 1, 2 and 3. L.Q. and R.W. revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ling-Ling Qian or Ru-Xing Wang.

Ethics declarations

Ethical approval and data availability statement

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, XL., Liu, HH. et al. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 51, 329 (2024). https://doi.org/10.1007/s11033-024-09290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09290-2

Keywords

Navigation