Skip to main content
Log in

Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43.

Methods

MI was induced in 50 male Sprague–Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 106 MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter.

Results

Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue.

Conclusions

MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal Stem Cells

PPAR-γ:

Peroxisome Proliferator-activated Receptor Gamma Cx43 Connexin 43

TGF-β1:

Transforming growth factor beta-1

Smad:

Decapentaplegic homolog proteins

ERK:

Extracellular signal-regulated kinase

References

  1. Hou, J., Wang, L., Jiang, J., et al. (2013). Cardiac stem cells and their roles in myocardial infarction. Stem Cell Reviews, 9, 326–338.

    Article  CAS  PubMed  Google Scholar 

  2. Pavo, N., Charwat, S., Nyolczas, N., et al. (2014). Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. Journal of Molecular and Cellular Cardiology, 75, 12–24.

    Article  CAS  PubMed  Google Scholar 

  3. Wen, Z., Zheng, S., Zhou, C., et al. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15, 1032–1043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wang, T., Sun, S., Wan, Z., et al. (2012). Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction. Resuscitation, 83, 1391–1396.

    Article  PubMed  Google Scholar 

  5. Santos, Nascimento, D., Mosqueira, D., Sousa, L. M., et al. (2014). Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Research & Therapy, 5, 5.

    Article  Google Scholar 

  6. Hare, J. M., Fishman, J. E., Gerstenblith, G., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy The POSEIDON randomized trial mesenchymal stem cells and ischemic cardiomyopathy. JAMA, 308, 2369–2379.

    Article  CAS  PubMed  Google Scholar 

  7. Mathiasen, A. B., Jørgensen, E., Qayyum, A. A., et al. (2012). Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial). American Heart Journal, 164, 285–291.

    Article  PubMed  Google Scholar 

  8. Buravkova, L.B., Andreeva, E.R., Gogvadze, V., et al. (2014). Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion, 19 Pt A, 105–112.

  9. Chacko, S. M., Ahmed, S., Selvendiran, K., et al. (2010). Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. American Journal of Physiology. Cell Physiology, 299(6), C1562–C1570.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. McGinley, L. M., McMahon, J., Stocca, A., et al. (2013). Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Human Gene Therapy, 24(10), 840–851.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Xing, Y., Hou, J., Guo, T., et al. (2014). MicroRNA-378 promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro. Stem Cell Research & Therapy, 5, 130.

    Article  Google Scholar 

  12. Kim, E., & Fishman, G. I. (2013). Designer gap junctions that prevent cardiac arrhythmias. Trends in Cardiovascular Medicine, 23(2), 33–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Li, X., Heinzel, F. R., Boengler, K., et al. (2004). Role of connexin-43 in ischemic preconditioning does not involve intercellular communication through gap junctions. Journal of Molecular and Cellular Cardiology, 36, 161–163.

    Article  CAS  PubMed  Google Scholar 

  14. Taniguchi Ishikawa, E., Gonzalez-Nieto, D., Ghiaur, G., et al. (2012). Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9071–9076.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lu, G., Haider, H. K., Porollo, A., et al. (2010). Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovascular Research, 88(2), 277–286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang, D., Shen, W., Zhang, F., et al. (2010). Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biology International, 34(4), 415–423.

    Article  PubMed  Google Scholar 

  17. Rosen, E. D., & Spiegelman, B. M. (2001). PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. The Journal of Biological Chemistry, 276(41), 37731–37734.

    Article  CAS  PubMed  Google Scholar 

  18. Ahmadian, M., Suh, J. M., Hah, N., et al. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 19(5), 557–566.

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava, R. A. (2011). Evaluation of anti-atherosclerotic activities of PPAR-α, PPAR-γ, and LXR agonists in hyperlipidemic atherosclerosis-susceptible F(1)B hamsters. Atherosclerosis, 4(1), 86–93.

    Article  Google Scholar 

  20. Nagashima, A., Watanabe, R., Ogawa, M., et al. (2012). Different roles of PPAR-γ activity on physiological and pathological alteration after myocardial ischemia. Journal of Cardiovascular Pharmacology, 60(2), 158–164.

    Article  CAS  PubMed  Google Scholar 

  21. Kanakasabai, S., Pestereva, E., Chearwae, W., et al. (2012). PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One, 7(11), e50500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liang, C., Ren, Y., Tan, H., et al. (2009). Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. British Journal of Pharmacology, 158(8), 1865–1873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shinmura, D., Togashi, I., Miyoshi, S., et al. (2011). Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells, 29(2), 357–366.

    Article  CAS  PubMed  Google Scholar 

  24. Segond, N., Degrelle, S. A., Berndt, S., et al. (2013). Transcriptome analysis of PPARγ target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion. PLoS One, 8(11), e79413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kawai, T., Masaki, T., Doi, S., et al. (2009). PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Laboratory Investigation, 89(1), 47–58.

    Article  CAS  PubMed  Google Scholar 

  26. Hou, J., Wang, L., Yan, P., et al. (2014). Angiotensin II downregulates connexin 43 via TGF-β1 mediated signaling pathways in a rat model of myocardial infarction. Experimental and Clinical Cardiology, 20(8), 2905–2940.

    CAS  Google Scholar 

  27. de Oliveira, F. L., Araújo-Jorge, T. C., de Souza, E. M., et al. (2012). Oral administration of GW788388, an inhibitor of transforming growth factor beta signaling, prevents heart fibrosis in Chagas disease. PLoS Neglected Tropical Diseases, 6(6), e1696.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5, 19.

    Article  Google Scholar 

  30. Zimmet, H., Porapakkham, P., Porapakkham, P., et al. (2012). Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. European Journal of Heart Failure, 14(1), 91–105.

    Article  PubMed  Google Scholar 

  31. Kandala, J., Upadhyay, G. A., Pokushalov, E., et al. (2013). Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. The American Journal of Cardiology, 112(2), 217–225.

    Article  PubMed  Google Scholar 

  32. Numasawa, Y., Kimura, T., Miyoshi, S., et al. (2011). Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells, 29(9), 1405–1414.

    CAS  PubMed  Google Scholar 

  33. Wang, L., Waltenberger, B., Pferschy-Wenzig, E. M., et al. (2014). Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochemical Pharmacology, 92(1), 73–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Morales-Garcia, J. A., Luna-Medina, R., Alfaro-Cervello, C., et al. (2011). Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia, 59(2), 293–307.

    Article  PubMed  Google Scholar 

  35. Chiang, M. C., Cheng, Y. C., Lin, K. H., et al. (2013). PPARγ regulates the mitochondrial dysfunction in human neural stem cells with tumor necrosis factor alpha. Neuroscience, 229, 118–129.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, D. Y., Davis, B. B., Wang, Z. H., et al. (2013). A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. International Journal of Cardiology, 167(4), 1298–1304.

    Article  PubMed  Google Scholar 

  37. Bruedigam, C., Eijken, M., Koedam, M., et al. (2010). A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells, 28(5), 916–927.

    CAS  PubMed  Google Scholar 

  38. Scott, M. A., Nguyen, V. T., Levi, B., et al. (2011). Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development, 20(10), 1793–1804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fontes, M. S., van Veen, T. A., de Bakker, J. M., et al. (2012). Functional consequences of abnormal Cx43 expression in the heart. Biochimica et Biophysica Acta, 181(8), 2020–2029.

    Article  Google Scholar 

  40. Greener, I. D., Sasano, T., Wan, X., et al. (2012). Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. Journal of the American College of Cardiology, 60(12), 1103–1110.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lu, G., Jiang, S., Ashraf, M., et al. (2012). Subcellular preconditioning of stem cells: mito-Cx43 gene targeting is cytoprotective via shift of mitochondrial Bak and Bcl-xL balance. Regenerative Medicine, 7(3), 323–334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lu, G., Haider, H. K., Jiang, S., et al. (2009). Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation, 119(19), 2587–2596.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wang, D. G., Zhang, F. X., Chen, M. L., et al. (2014). Cx43 in mesenchymal stem cells promotes angiogenesis of the infarcted heart independent of gap junctions. Molecular Medicine Reports, 9(4), 1095–1102.

    CAS  PubMed  Google Scholar 

  44. Roell, W., Lewalter, T., Sasse, P., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450, 819–824.

    Article  CAS  PubMed  Google Scholar 

  45. Bacova, B., Radosinska, J., Knezl, V., et al. (2010). Omega-3 fatty acids and atorvastatin suppress ventricular fibrillation inducibility in hypertriglyceridemic rat hearts: implication of intracellular coupling protein, connexin-43. Journal of Physiology and Pharmacology, 61(6), 717–723.

    CAS  PubMed  Google Scholar 

  46. Radosinska, J., Bacova, B., Knezl, V., et al. (2013). Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. Journal of Hypertension, 31(9), 1876–1885.

    Article  CAS  PubMed  Google Scholar 

  47. Zambrano, S., Blanca, A. J., Ruiz-Armenta, M. V., et al. (2013). L-Carnitine protects against arterial hypertension-related cardiac fibrosis through modulation of PPAR-γ expression. Biochemical Pharmacology, 85(7), 937–944.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, X., Wang, Q. X., Guo, M., et al. (2013). Beneficial effects of pioglitazone on atrial structural and electrical remodeling in vitro cellular models. Journal of Molecular and Cellular Cardiology, 65, 1–8.

    Article  CAS  PubMed  Google Scholar 

  49. Neuhaus, J., Heinrich, M., Schwalenberg, T., et al. (2009). TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor. European Urology, 55(2), 491–497.

    Article  CAS  PubMed  Google Scholar 

  50. Surinkaew, S., Kumphune, S., Chattipakorn, S., et al. (2013). Inhibition of p38 MAPK during ischemia, but not reperfusion, effectively attenuates fatal arrhythmia in ischemia/reperfusion heart. Journal of Cardiovascular Pharmacology, 61(2), 133–141.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Y., Yu, L., Xu, S., et al. (2011). Down-regulation of connexin43 gap junction by serum deprivation in human endothelial cells was improved by (−)-Epigallocatechin gallate via ERK MAP kinase pathway. Biochemical and Biophysical Research Communications, 404(1), 217–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant [2013]163 from Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology; Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes; National Natural Science Foundation of China (No: 81070125, 81270213), Science and Technology Foundation in Guangdong Province (No: 2010B031600032, 2014A020211002) and the Fundamental Research Funds for the Central Universities (13ykzd16).

Conflict of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

This work was done by the investigators of the Sun Yat-sen Memorial Hospital of Sun Yat-sen University. The authors took responsibility for all aspects of the reliability and had no differences in data presentation and interpretation. Jingying Hou and Linyun Wang carried out the experiments and drafted the manuscript; Yue Xing, Tianzhu Guo, Shaoxin Zheng and Changqing Zhou participated in the preparation of the animal model, tissue staining, and molecular assay; Jinghui Hou, Hui Huang and Jingfeng Wang provided the technical assistance; Huibao Long, Tingting Zhong and Quanhua Wu participated the statistical analysis; Tong Wang conceived the study and participated in the study design. All the authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

Additional information

Dr. Jingying Hou and Dr. Lingyun Wang played equally important roles in the development of the experimental protocol in the interpretation of the results, and in the texture of the present article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wang, L., Hou, J. et al. Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev and Rep 11, 885–899 (2015). https://doi.org/10.1007/s12015-015-9615-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9615-7

Keywords

Navigation