Skip to main content

Advertisement

Log in

Genetically modified mice as a tool for the study of human diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data is associated with the manuscript.

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

AAV:

Adeno-associated virus

BMMC:

Bone marrow mononuclear cell

Cu/Zn-SOD:

Cu/Zn superoxide dismutase-1

DMD:

Duchenne muscular dystrophy

DSB:

Double-strand breaks

ESC:

Embryonic stem cells

FUS:

Fused in sarcoma

GM:

Gene modified

GWAS:

Genome-wide association studies

HBV:

Hepatitis B virus

HDL:

High-density lipoprotein

LDLR:

Low-density lipoprotein receptor

HDR:

Homology directed repair

HLA:

Human leukocyte antigens

HPRT:

Hypoxanthine phosphoribosyl transferase

HPV:

Human papillomaviruses

LNS:

Lesch–Nyhan syndrome

KI:

Knock-in

KO:

Knock-out

NHEJ:

Non-homologous end joining

NOD:

Non-obese diabetes

sgRNA:

Single guide RNA

siRNA:

Small interfering RNA

SNP:

Single nucleotide polymorphism

ORFs:

Open reading frames

PV:

Poliovirus

PVR:

Poliovirus receptor

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

SMA:

Spinal muscular atrophy

References

  1. Breschi A, Gingeras TR, Guigó R (2017) Comparative transcriptomics in human and mouse. Nat Rev Genet 18(7):425–440. https://doi.org/10.1038/nrg.2017.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Averina OA, Vysokikh MY, Permyakov OA, Sergiev PV (2020) Simple recommendations for improving efficiency in generating genome-edited mice. Acta Nat 12(1):42–50. https://doi.org/10.32607/actanaturae.10937

    Article  CAS  Google Scholar 

  3. Ormandy EH, Dale J, Griffin G (2011) Genetic engineering of animals: ethical issues, including welfare concerns. Canadian Vet J 52(5):544–50

    Google Scholar 

  4. Hrabé de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25(4):444–447. https://doi.org/10.1038/78146

    Article  CAS  PubMed  Google Scholar 

  5. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E, Washbourne R, Hough T, Greenaway S, Hewitt M, Liu X, McCormack S, Pickford K, Selley R, Wells C, Tymowska-Lalanne Z, Roby P, Glenister P, Thornton C, Thaung C, Stevenson JA, Arkell R, Mburu P, Hardisty R, Kiernan A, Erven A, Steel KP, Voegeling S, Guenet JL, Nickols C, Sadri R, Nasse M, Isaacs A, Davies K, Browne M, Fisher EM, Martin J, Rastan S, Brown SD, Hunter J (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25(4):440–443. https://doi.org/10.1038/78140

    Article  CAS  PubMed  Google Scholar 

  6. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77(12):7380–7384. https://doi.org/10.1073/pnas.77.12.7380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin TP (1966) Microinjection of mouse eggs. Science (New York) 151(3708):333–337. https://doi.org/10.1126/science.151.3708.333

    Article  CAS  Google Scholar 

  8. Kim YS, Kim GR, Park M, Yang SC, Park SH, Won JE, Lee JH, Shin HE, Song H, Kim HR (2020) Electroporation of AsCpf1/RNP at the zygote stage is an efficient genome editing method to generate knock-out mice deficient in leukemia inhibitory factor. Tissue Eng Regen Med 17(1):45–53. https://doi.org/10.1007/s13770-019-00225-8

    Article  CAS  PubMed  Google Scholar 

  9. Yoon Y, Wang D, Tai PWL, Riley J, Gao G, Rivera-Pérez JA (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9(1):412. https://doi.org/10.1038/s41467-017-02706-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakagawa Y, Sakuma T, Sakamoto T, Ohmuraya M, Nakagata N, Yamamoto T (2015) Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol 15:33. https://doi.org/10.1186/s12896-015-0144-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gurumurthy CB, Sato M, Nakamura A, Inui M, Kawano N, Islam MA, Ogiwara S, Takabayashi S, Matsuyama M, Nakagawa S, Miura H, Ohtsuka M (2019) Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat Protoc 14(8):2452–2482. https://doi.org/10.1038/s41596-019-0187-x

    Article  CAS  PubMed  Google Scholar 

  12. Melo-Silva CR, Knudson CJ, Tang L, Kafle S, Springer LE, Choi J, Snyder CM, Wang Y, Kim SV, Sigal LJ (2023) Multiple and consecutive genome editing using i-GONAD and breeding enrichment facilitates the production of genetically modified mice. Cells. https://doi.org/10.3390/cells12091343

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 19(1):25. https://doi.org/10.1186/s13059-018-1400-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato M, Miyagasako R, Takabayashi S, Ohtsuka M, Hatada I, Horii T (2020) Sequential i-GONAD: an improved in vivo technique for CRISPR/Cas9-based genetic manipulations in mice. Cells. https://doi.org/10.3390/cells9030546

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takahashi G, Gurumurthy CB, Wada K, Miura H, Sato M, Ohtsuka M (2015) GONAD: genome-editing via oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice. Sci Rep 5:11406. https://doi.org/10.1038/srep11406

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jin SL, Latour AM, Conti M (2005) Generation of PDE4 knockout mice by gene targeting. Methods Mol Biol (Clifton) 307:191–210. https://doi.org/10.1385/1-59259-839-0:191

    Article  CAS  Google Scholar 

  17. Misra RP, Bronson SK, Xiao Q, Garrison W, Li J, Zhao R, Duncan SA (2001) Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation. BMC Biotechnol 1:12. https://doi.org/10.1186/1472-6750-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, Cobos-Figueroa J, Ousinde O, Bermejo-Álvarez P (2019) Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9(1):14900 https://doi.org/10.1038/s41598-019-51366-8.

  19. Jiang J, Zhang L, Zhou X, Chen X, Huang G, Li F, Wang R, Wu N, Yan Y, Tong C, Srivastava S, Wang Y, Liu H, Ying QL (2016) Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 6:21918. https://doi.org/10.1038/srep21918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sumiyama K, Matsumoto N, Garçon-Yoshida J, Ukai H, Ueda HR, Tanaka Y (2018) Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS ONE 13(9):e0203056. https://doi.org/10.1371/journal.pone.0203056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen D, Saiz N, Rosenwaks Z, Hadjantonakis AK, Rafii S (2014) Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLoS ONE 9(4):e94730. https://doi.org/10.1371/journal.pone.0094730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kühn R (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4. https://doi.org/10.1186/s12896-016-0234-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanimoto Y, Mikami N, Ishida M, Iki N, Kato K, Sugiyama F, Takahashi S, Mizuno S (2022) Zygote microinjection for creating gene cassette knock-in and flox alleles in mice. J Vis Exp. https://doi.org/10.3791/64161

    Article  PubMed  Google Scholar 

  24. Qin W, Wang H (2019) Delivery of CRISPR-Cas9 into mouse zygotes by electroporation. Methods Mol Biol (Clifton) 1874:179–190. https://doi.org/10.1007/978-1-4939-8831-0_10

    Article  CAS  Google Scholar 

  25. Takemoto T (2020) Zygote electroporation for CRISPR/Cas9 delivery to generate genetically modified mice. Methods Mol Biol (Clifton) 2050:121–126. https://doi.org/10.1007/978-1-4939-9740-4_13

    Article  CAS  Google Scholar 

  26. Krivonogova AS, Bruter AV, Makutina VA, Okulova YD, Ilchuk LA, Kubekina MV, Khamatova AY, Egorova TV, Mymrin VS, Silaeva YY, Deykin AV, Filatov MA, Isaeva AG (2022) AAV infection of bovine embryos: novel, simple and effective tool for genome editing. Theriogenology 193:77–86. https://doi.org/10.1016/j.theriogenology.2022.09.007

    Article  CAS  PubMed  Google Scholar 

  27. Mizuno N, Mizutani E, Sato H, Kasai M, Ogawa A, Suchy F, Yamaguchi T, Nakauchi H (2018) Intra-embryo gene cassette Knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. Science 9:286–97. https://doi.org/10.1016/j.isci.2018.10.030

    Article  CAS  Google Scholar 

  28. Leidy-Davis T, Cheng K, Goodwin LO, Morgan JL, Juan WC, Roca X, Ong ST, Bergstrom DE (2018) Viable mice with extensive gene humanization (25-kbp) created using embryonic stem cell/blastocyst and CRISPR/Zygote injection approaches. Sci Rep 8(1):15028. https://doi.org/10.1038/s41598-018-33408-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma Y, He L, Xiang L, Zhang J, Wang J, Zhu W, Cao W, Zhu Y, Gao M, Zhou F, Liu Z (2021) Efficiency comparison of B6(Cg)-Tyr(c-2j) /J and C57BL/6NTac embryos as hosts for the generation of knockout mice. Transgenic Res 30(3):275–281. https://doi.org/10.1007/s11248-021-00248-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snell GD (1935) The Induction by X-rays of hereditary changes in mice. Genetics 20(6):545–567. https://doi.org/10.1093/genetics/20.6.545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin H, Zhang T, Wang H, Hu X, Hou X, Fang X, Yin Y, Li H, Shi L, Su YQ (2021) Echinoderm microtubule associated protein like 1 is indispensable for oocyte spindle assembly and meiotic progression in mice. Front Cell Dev Biol 9:687522. https://doi.org/10.3389/fcell.2021.687522

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vitaterna MH, Pinto LH, Takahashi JS (2006) Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends Neurosci 29(4):233–240. https://doi.org/10.1016/j.tins.2006.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36(9):921–924. https://doi.org/10.1038/ng0904-921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strzyz P (2020) CRISPR-Cas9 wins Nobel. Nat Rev Mol Cell Biol 21(12):714. https://doi.org/10.1038/s41580-020-00307-9

    Article  CAS  PubMed  Google Scholar 

  35. Gemberling MP, Siklenka K, Rodriguez E, Tonn-Eisinger KR, Barrera A, Liu F, Kantor A, Li L, Cigliola V, Hazlett MF, Williams CA, Bartelt LC, Madigan VJ, Bodle JC, Daniels H, Rouse DC, Hilton IB, Asokan A, Ciofani M, Poss KD, Reddy TE, West AE, Gersbach CA (2021) Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat Methods 18(8):965–974. https://doi.org/10.1038/s41592-021-01207-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Şenödeyici E, Şahintürk DK, Akbolat BR, Dİndar A, Sefer S, AnĞay GF, Demİr S (2021) Main genome editing tools: an overview of the literature, future applications and ethical questions. Turk Med Stud J 8(2):50–7

    Article  Google Scholar 

  37. Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim JY (2021) CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. Plant Biotechnol J 19(2):230–239. https://doi.org/10.1111/pbi.13490

    Article  CAS  PubMed  Google Scholar 

  38. Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, Matuszek Z, Newby GA, Rees HA, Liu DR (2020) Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 38(4):471–481. https://doi.org/10.1038/s41587-020-0412-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan Y, Chu AHY, Bao S, Hoang DA, Kebede FT, Xiong W, Ji M, Shi J, Zheng Z (2019) Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 116(42):20969–20976. https://doi.org/10.1073/pnas.1906843116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li P, Zhang L, Li Z, Xu C, Du X, Wu S (2020) Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Cell Mol Life Sci 77(19):3875–3884. https://doi.org/10.1007/s00018-019-03396-8

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Liu X, Li L, Tan Q, Li S, Li L, Li C, Fu J, Lu Y, Wang Y, Sun Y, Luo ZG, Lu Z, Sun Q, Liu Z (2023) CATI: an efficient gene integration method for rodent and primate embryos by MMEJ suppression. Genome Biol 24(1):146. https://doi.org/10.1186/s13059-023-02987-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raychowdhury R, Gentili M, Cui A, Schweitzer LD, Li B, Hacohen N (2021) Macrophages from Rosa26-integrated Cas9-expressing C57BL/6J mice have a putative TRIF-mediated defect in the TLR-3/4 signaling. ImmunoHorizons 5(10):818–829. https://doi.org/10.4049/immunohorizons.2100010

    Article  CAS  PubMed  Google Scholar 

  43. Sakurai T, Shindo T (2021) Production of single- and multiple-gene-modified mice via maternal SpCas9-based gene editing. STAR Protocols 2(2):100509. https://doi.org/10.1016/j.xpro.2021.100509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol (Clifton) 1064:315–336. https://doi.org/10.1007/978-1-62703-601-6_23

    Article  CAS  Google Scholar 

  45. Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T, Tanaka T, Ishikubo H, Hiraoka Y, Takemoto N, Tanaka T, Ooguchi Y, Skehel P, Aida T, Takeda J, Mashimo T (2018) CLICK: one-step generation of conditional knockout mice. BMC Genomics 19(1):318. https://doi.org/10.1186/s12864-018-4713-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342. https://doi.org/10.1038/nature10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung CJ, Zhang J, Trenchard E, Lloyd KC, West DB, Rosen B, de Jong PJ (2017) Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Res 26(2):263–277. https://doi.org/10.1007/s11248-016-9998-5

    Article  CAS  PubMed  Google Scholar 

  48. Liu ET, Bolcun-Filas E, Grass DS, Lutz C, Murray S, Shultz L, Rosenthal N (2017) Of mice and CRISPR: the post-CRISPR future of the mouse as a model system for the human condition. EMBO Rep 18(2):187–193. https://doi.org/10.15252/embr.201643717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, Gale M, Xu Q, Yan Q (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44(19):e149. https://doi.org/10.1093/nar/gkw660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang K, Huang L, Li Q, Liao X, Dang Q, Yang Y, Luo J, Zeng Y, Li L, Gou D (2019) An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. J Animal Sci Biotechnol 10:43. https://doi.org/10.1186/s40104-019-0354-5

    Article  CAS  Google Scholar 

  51. Emery DW, Aker M, Stamatoyannopoulos G (2003) Chromatin Insulators and Position Effects. New Comprehensive Biochemistry, Elsevier:381–95. doi: https://doi.org/10.1016/S0167-7306(03)38023-8.

  52. Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431. https://doi.org/10.1038/ncomms10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen CL, Rodiger J, Chung V, Viswanatha R, Mohr SE, Hu Y, Perrimon N (2020) SNP-CRISPR: a web tool for SNP-specific genome editing. G3 (Bethesda) 10(2):489–94. https://doi.org/10.1534/g3.119.400904

    Article  CAS  PubMed  Google Scholar 

  54. Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N (2020) Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. https://doi.org/10.3390/ijms21186461

    Article  PubMed  PubMed Central  Google Scholar 

  55. Denes CE, Cole AJ, Aksoy YA, Li G, Neely GG, Hesselson D (2021) Approaches to enhance precise CRISPR/Cas9-mediated genome editing. Int J Mol Sci. https://doi.org/10.3390/ijms22168571

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, Shen X, Wei Y, Huang Z, Ying W, Wang Y, Nie YH, Zhang CC, Li S, Cheng L, Wang Q, Wu Y, Huang P, Sun Q, Shi L, Yang H (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27(6):801–814. https://doi.org/10.1038/cr.2017.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aksoy YA, Nguyen DT, Chow S, Chung RS, Guillemin GJ, Cole NJ, Hesselson D (2019) Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Commun Biol 2:198. https://doi.org/10.1038/s42003-019-0444-0

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2018) Methodologies for improving HDR efficiency. Front Genet 9:691. https://doi.org/10.3389/fgene.2018.00691

    Article  CAS  PubMed  Google Scholar 

  59. Ghanta KS, Chen Z, Mir A, Dokshin GA, Krishnamurthy PM, Yoon Y, Gallant J, Xu P, Zhang XO, Ozturk AR, Shin M, Idrizi F, Liu P, Gneid H, Edraki A, Lawson ND, Rivera-Pérez JA, Sontheimer EJ, Watts JK, Mello CC (2021) 5′-modifications improve potency and efficacy of DNA donors for precision genome editing. eLife. https://doi.org/10.7554/eLife.72216

    Article  PubMed  PubMed Central  Google Scholar 

  60. Medert R, Thumberger T, Tavhelidse-Suck T, Hub T, Kellner T, Oguchi Y, Dlugosz S, Zimmermann F, Wittbrodt J, Freichel M (2023) Efficient single copy integration via homology-directed repair (scHDR) by 5’modification of large DNA donor fragments in mice. Nucleic Acids Res 51(3):e14. https://doi.org/10.1093/nar/gkac1150

    Article  CAS  PubMed  Google Scholar 

  61. Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res 27(4):578–581. https://doi.org/10.1038/cr.2017.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wierson WA, Welker JM, Almeida MP, Mann CM, Webster DA, Torrie ME, Weiss TJ, Kambakam S, Vollbrecht MK, Lan M, McKeighan KC, Levey J, Ming Z, Wehmeier A, Mikelson CS, Haltom JA, Kwan KM, Chien CB, Balciunas D, Ekker SC, Clark KJ, Webber BR, Moriarity BS, Solin SL, Carlson DF, Dobbs DL, McGrail M, Essner J (2020) Efficient targeted integration directed by short homology in zebrafish and mammalian cells. eLife 9. doi: https://doi.org/10.7554/eLife.53968.

  63. Yoshimi K, Oka Y, Miyasaka Y, Kotani Y, Yasumura M, Uno Y, Hattori K, Tanigawa A, Sato M, Oya M, Nakamura K, Matsushita N, Kobayashi K, Mashimo T (2021) Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Hum Genet 140(2):277–287. https://doi.org/10.1007/s00439-020-02198-4

    Article  CAS  PubMed  Google Scholar 

  64. Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36(7):632–637. https://doi.org/10.1038/nbt.4166

    Article  CAS  PubMed  Google Scholar 

  65. Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, Liu Q (2016) The Philadelphia chromosome in leukemogenesis. Chin J Cancer 35:48. https://doi.org/10.1186/s40880-016-0108-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao Y, Zhao G, Chang Z, Zhu T, Zhao Y, Lu H, Xue C, Saunders TL, Guo Y, Chang L, Chen YE, Zhang J (2023) Generating endogenous Myh11-driven Cre mice for sex-independent gene deletion in smooth muscle cells. JCI insight 8(14). doi: https://doi.org/10.1172/jci.insight.171661.

  67. Nomura J, Takumi T (2012) Animal models of psychiatric disorders that reflect human copy number variation. Neural Plast 2012:589524. https://doi.org/10.1155/2012/589524

    Article  PubMed  PubMed Central  Google Scholar 

  68. Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5:3728. https://doi.org/10.1038/ncomms4728

    Article  CAS  PubMed  Google Scholar 

  69. Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, Jasin M, Brunet E (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55(6):829–842. https://doi.org/10.1016/j.molcel.2014.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lau CH, Suh Y (2017) In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research 6:2153. doi: https://doi.org/10.12688/f1000research.11243.1.

  71. Ikawa M, Tanaka N, Kao WW, Verma IM (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy 8(4):666–673. https://doi.org/10.1016/s1525-0016(03)00240-5

    Article  CAS  PubMed  Google Scholar 

  72. Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145(6):1271–1279

    Google Scholar 

  73. Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97(23):12571–12576. https://doi.org/10.1073/pnas.220417997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, Bachurin SO, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Skvortsova VI, Ling SC, Da Cruz S, Parone PA, Buchman VL, Ninkina NN (2013) Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem 288(35):25266–25274. https://doi.org/10.1074/jbc.M113.492017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science (New York, NY) 244(4912):1578–1580. https://doi.org/10.1126/science.2662404

    Article  CAS  Google Scholar 

  76. Egorova TV, Zotova ED, Reshetov DA, Polikarpova AV, Vassilieva SG, Vlodavets DV, Gavrilov AA, Ulianov SV, Buchman VL, Deykin AV (2019) CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene. Dis Models Mech. https://doi.org/10.1242/dmm.037655

    Article  Google Scholar 

  77. Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN (2020) Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci USA 117(47):29691–29701. https://doi.org/10.1073/pnas.2018391117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, Mireault AA, Liu N, Bassel-Duby R, Olson EN (2021) Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. https://doi.org/10.1126/sciadv.abg4910

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50:S178-82. https://doi.org/10.1194/jlr.R800070-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89(10):4471–4475. https://doi.org/10.1073/pnas.89.10.4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Golforoush P, Yellon DM, Davidson SM (2020) Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 115(6):73. https://doi.org/10.1007/s00395-020-00829-5

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der WJ, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27(8):1706–21. https://doi.org/10.1161/atvbaha.107.142570

    Article  CAS  PubMed  Google Scholar 

  83. Jackson HM, Onos KD, Pepper KW, Graham LC, Akeson EC, Byers C, Reinholdt LG, Frankel WN, Howell GR (2015) DBA/2J genetic background exacerbates spontaneous lethal seizures but lessens amyloid deposition in a mouse model of Alzheimer’s disease. PLoS ONE 10(5):e0125897. https://doi.org/10.1371/journal.pone.0125897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495. https://doi.org/10.1016/s0092-8674(00)81294-5

    Article  CAS  PubMed  Google Scholar 

  85. Wang B, Chandrasekera PC, Pippin JJ (2014) Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 10(2):131–145. https://doi.org/10.2174/1573399810666140508121012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brophy CM, Tilson JE, Braverman IM, Tilson MD (1988) Age of onset, pattern of distribution, and histology of aneurysm development in a genetically predisposed mouse model. J Vasc Surg 8(1):45–48

    Article  CAS  PubMed  Google Scholar 

  87. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, Jackson SP (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80(5):813–823. https://doi.org/10.1016/0092-8674(95)90360-7

    Article  CAS  PubMed  Google Scholar 

  88. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 93(19):10285–10290. https://doi.org/10.1073/pnas.93.19.10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pantelouris EM (1968) Absence of thymus in a mouse mutant. Nature 217(5126):370–371. https://doi.org/10.1038/217370a0

    Article  CAS  PubMed  Google Scholar 

  90. Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, Barthlott T, Ponting CP, Holländer GA (2016) Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17(10):1206–1215. https://doi.org/10.1038/ni.3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rahman MA, Thomas R (2017) The SKG model of spondyloarthritis. Best Pract Res Clin Rheumatol 31(6):895–909. https://doi.org/10.1016/j.berh.2018.07.004

    Article  PubMed  Google Scholar 

  92. Peccoud J, Dellabona P, Allen P, Benoist C, Mathis D (1990) Delineation of antigen contact residues on an MHC class II molecule. EMBO J 9(13):4215–4223. https://doi.org/10.1002/j.1460-2075.1990.tb07869.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87(5):811–822. https://doi.org/10.1016/s0092-8674(00)81989-3

    Article  CAS  PubMed  Google Scholar 

  94. Arbeit JM, Münger K, Howley PM, Hanahan D (1993) Neuroepithelial carcinomas in mice transgenic with human papillomavirus type 16 E6/E7 ORFs. Am J Pathol 142(4):1187–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hay AM, Howie HL, Gorham JD, D’Alessandro A, Spitalnik SL, Hudson KE, Zimring JC (2021) Mouse background genetics in biomedical research: the devil’s in the details. Transfusion 61(10):3017–3025. https://doi.org/10.1111/trf.16628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SW (2002) Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81–85. https://doi.org/10.1038/ng794

    Article  CAS  PubMed  Google Scholar 

  97. Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65(1–2):125–32. https://doi.org/10.1016/0378-5955(93)90207-h

    Article  CAS  PubMed  Google Scholar 

  98. Kovács AD, Pearce DA (2015) Finding the most appropriate mouse model of juvenile CLN3 (Batten) disease for therapeutic studies: the importance of genetic background and gender. Dis Model Mech 8(4):351–361. https://doi.org/10.1242/dmm.018804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, Novak JS, Nearing M, Quinn JL, Saunders A, Dolan C, Andrews W, Lammert C, Austin A, Partridge TA, Cox GA, Lutz C, Nagaraju K (2016) Effect of genetic background on the dystrophic phenotype in mdx mice. Hum Mol Genet 25(1):130–145. https://doi.org/10.1093/hmg/ddv460

    Article  CAS  PubMed  Google Scholar 

  100. Eshraghi M, McFall E, Gibeault S, Kothary R (2016) Effect of genetic background on the phenotype of the Smn2B/- mouse model of spinal muscular atrophy. Hum Mol Genet 25(20):4494–4506. https://doi.org/10.1093/hmg/ddw278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ (2020) Human motor neurons With SOD1-G93A mutation generated from CRISPR/Cas9 gene-edited iPSCs develop pathological features of amyotrophic lateral sclerosis. Front Cell Neurosci 14:604171. https://doi.org/10.3389/fncel.2020.604171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, Maragakis N, Cox G (2011) Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotrophic Lateral Sclerosis 12(2):79–86. https://doi.org/10.3109/17482968.2010.550626

    Article  CAS  PubMed  Google Scholar 

  103. Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50:S156-61. https://doi.org/10.1194/jlr.R800058-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leigh SE, Foster AH, Whittall RA, Hubbart CS, Humphries SE (2008) Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet 72(Pt 4):485–498. https://doi.org/10.1111/j.1469-1809.2008.00436.x

    Article  CAS  PubMed  Google Scholar 

  105. Méndez-Lara KA, Farré N, Santos D, Rivas-Urbina A, Metso J, Sánchez-Quesada JL, Llorente-Cortes V, Errico TL, Lerma E, Jauhiainen M, Martín-Campos JM, Alonso N, Escolà-Gil JC, Blanco-Vaca F, Julve J (2019) Human ApoA-I overexpression enhances macrophage-specific reverse cholesterol transport but fails to prevent inherited diabesity in mice. Int J Mol Sci. https://doi.org/10.3390/ijms20030655

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedja D, Paolocci N, L’Abbate A, Abraham NG (2011) Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J Cell Biochem 112(9):2616–2626. https://doi.org/10.1002/jcb.23188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rubin EM, Ishida BY, Clift SM, Krauss RM (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci USA 88(2):434–438. https://doi.org/10.1073/pnas.88.2.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC (2019) Humanized mouse models of rheumatoid arthritis for studies on immunopathogenesis and preclinical testing of cell-based therapies. Front Immunol 10:203. https://doi.org/10.3389/fimmu.2019.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119(6):861–872. https://doi.org/10.1016/j.cell.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  110. Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122. https://doi.org/10.1038/315115a0

    Article  CAS  PubMed  Google Scholar 

  111. Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science (New York) 278(5335):120–123. https://doi.org/10.1126/science.278.5335.120

    Article  CAS  Google Scholar 

  112. Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T (2004) Reversible lymphomagenesis in conditionally c-MYC expressing mice. Int J Cancer 110(3):336–342. https://doi.org/10.1002/ijc.20099

    Article  CAS  PubMed  Google Scholar 

  113. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with down syndrome phenotypes. Science (New York) 309(5743):2033–2037. https://doi.org/10.1126/science.1114535

    Article  CAS  Google Scholar 

  114. Sheppard O, Wiseman FK, Ruparelia A, Tybulewicz VL, Fisher EM (2012) Mouse models of aneuploidy. Sci World J 2012:214078. https://doi.org/10.1100/2012/214078

    Article  CAS  Google Scholar 

  115. Wolvetang EJ, Wilson TJ, Sanij E, Busciglio J, Hatzistavrou T, Seth A, Hertzog PJ, Kola I (2003) ETS2 overexpression in transgenic models and in Down syndrome predisposes to apoptosis via the p53 pathway. Hum Mol Genet 12(3):247–255. https://doi.org/10.1093/hmg/ddg015

    Article  CAS  PubMed  Google Scholar 

  116. Masemann D, Ludwig S, Boergeling Y (2020) Advances in transgenic mouse models to study infections by human pathogenic viruses. Int J Mol Scie. https://doi.org/10.3390/ijms21239289

    Article  Google Scholar 

  117. McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, Kirby P, Look DC, Perlman S (2007) Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81(2):813–821. https://doi.org/10.1128/jvi.02012-06

    Article  CAS  PubMed  Google Scholar 

  118. Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, Makino S, Packard MM, Zaki SR, Chan TS, Peters CJ (2007) Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol 81(3):1162–1173. https://doi.org/10.1128/jvi.01702-06

    Article  CAS  PubMed  Google Scholar 

  119. Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, Gao H, Huang L, Liu YL, Ma CM, Xu YF, Ding MX, Deng HK, Qin C (2007) Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 57(5):450–459

    CAS  PubMed  Google Scholar 

  120. Fréminet A, Leclerc L (1980) Effect of fasting on liver and muscle glycogen in rats and guinea pigs. J de Physiol 76(8):877–880

    Google Scholar 

  121. Bruter AV, Korshunova DS, Kubekina MV, Sergiev PV, Kalinina AA, Ilchuk LA, Silaeva YY, Korshunov EN, Soldatov VO, Deykin AV (2021) Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic Res 30(3):289–301. https://doi.org/10.1007/s11248-021-00249-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82(15):7264–7275. https://doi.org/10.1128/jvi.00737-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN 2nd, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R Jr, Dick EJ Jr, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB (2020) Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 11(1):6122. https://doi.org/10.1038/s41467-020-19891-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rathnasinghe R, Strohmeier S, Amanat F, Gillespie VL, Krammer F, García-Sastre A, Coughlan L, Schotsaert M, Uccellini MB (2020) Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg Microbes Infect 9(1):2433–2445. https://doi.org/10.1080/22221751.2020.1838955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, Wang S, Song Z, Zhao L, Liu P, Zhao L, Ye F, Wang H, Zhou W, Zhu N, Zhen W, Yu H, Zhang X, Guo L, Chen L, Wang C, Wang Y, Wang X, Xiao Y, Sun Q, Liu H, Zhu F, Ma C, Yan L, Yang M, Han J, Xu W, Tan W, Peng X, Jin Q, Wu G, Qin C (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818):830–833. https://doi.org/10.1038/s41586-020-2312-y

    Article  CAS  PubMed  Google Scholar 

  126. Zheng J, Wong LR, Li K, Verma AK, Ortiz ME, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB Jr, Perlman S (2021) COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589(7843):603–607. https://doi.org/10.1038/s41586-020-2943-z

    Article  CAS  PubMed  Google Scholar 

  127. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 181(2):271–80.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ohka S, Igarashi H, Nagata N, Sakai M, Koike S, Nochi T, Kiyono H, Nomoto A (2007) Establishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor. J Virol 81(15):7902–7912. https://doi.org/10.1128/jvi.02675-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuehn MR, Bradley A, Robertson EJ, Evans MJ (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326(6110):295–298. https://doi.org/10.1038/326295a0

    Article  CAS  PubMed  Google Scholar 

  130. Kubekina MV, Kalmykov VA, Kusov PA, Silaeva YY, Deikin AV (2019) Lesch-Nyhan syndrome: from patient to mouse model. J Anim Sci 97:46–47. https://doi.org/10.1093/jas/skz258.092

    Article  PubMed Central  Google Scholar 

  131. Bell S, Kolobova I, Crapper L, Ernst C (2016) Lesch-Nyhan syndrome: models, theories, and therapies. Mol Syndromol 7(6):302–311. https://doi.org/10.1159/000449296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keebaugh AC, Mitchell HA, Gaval-Cruz M, Freeman KG, Edwards GL, Weinshenker D, Thomas JW (2011) PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse. PLoS ONE 6(7):e22381. https://doi.org/10.1371/journal.pone.0022381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Keebaugh AC, Sullivan RT, Thomas JW (2007) Gene duplication and inactivation in the HPRT gene family. Genomics 89(1):134–142. https://doi.org/10.1016/j.ygeno.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  134. Oblak AL, Forner S, Territo PR, Sasner M, Carter GW, Howell GR, Sukoff-Rizzo SJ, Logsdon BA, Mangravite LM, Mortazavi A, Baglietto-Vargas D, Green KN, MacGregor GR, Wood MA, Tenner AJ, LaFerla FM, Lamb BT (2020) Model organism development and evaluation for late-onset Alzheimer’s disease: MODEL-AD. Alzheimer’s Dementia (New York) 6(1):e12110. https://doi.org/10.1002/trc2.12110

    Article  Google Scholar 

  135. Anantharaman M, Tangpong J, Keller JN, Murphy MP, Markesbery WR, Kiningham KK, St Clair DK (2006) Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer’s disease. Am J Pathol 168(5):1608–1618. https://doi.org/10.2353/ajpath.2006.051223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Foidl BM, Humpel C (2020) Can mouse models mimic sporadic Alzheimer’s disease? Neural Regen Res 15(3):401–406. https://doi.org/10.4103/1673-5374.266046

    Article  CAS  PubMed  Google Scholar 

  137. Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R (2018) The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. The Lancet Neurol 17(8):721–730. https://doi.org/10.1016/s1474-4422(18)30232-1

    Article  CAS  PubMed  Google Scholar 

  138. Bour A, Grootendorst J, Vogel E, Kelche C, Dodart JC, Bales K, Moreau PH, Sullivan PM, Mathis C (2008) Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 193(2):174–182. https://doi.org/10.1016/j.bbr.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  139. Grootendorst J, Bour A, Vogel E, Kelche C, Sullivan PM, Dodart JC, Bales K, Mathis C (2005) Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav Brain Res 159(1):1–14. https://doi.org/10.1016/j.bbr.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  140. Franco R, Cedazo-Minguez A (2014) Successful therapies for Alzheimer’s disease: why so many in animal models and none in humans? Front Pharmacol 5:146. https://doi.org/10.3389/fphar.2014.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morris GP, Clark IA, Vissel B (2014) Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2:135. https://doi.org/10.1186/s40478-014-0135-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation project no. 22-15-00227 and by grant 075-15-2021-668 (29.07.2021) from the UNU Transgenbank. Chapter “Concerns” section was financed through the Russian Science Foundation and all other parts were performed by the grant support of the UNU Transgenbank.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception. The first draft of the manuscript was written by AVB, images were prepared by EAV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maxim A. Filatov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruter, A.V., Varlamova, E.A., Okulova, Y.D. et al. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 51, 135 (2024). https://doi.org/10.1007/s11033-023-09066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09066-0

Keywords

Navigation