Skip to main content
Log in

The siRNA-mediated knockdown of SNHG4 efficiently induced pro-apoptotic signaling and suppressed metastasis in SW1116 colorectal cancer cell line

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Long non-coding RNAs are broadly dysregulated in disease conditions, especially cancer, and are associated with tumor initiation, invasion, and overall survival. This study aimed to elucidate the expression level of Small Nucleolar RNA Host Gene 4 (SNHG4) lncRNA in colorectal cancer (CRC) and its effect on cell cycle progression, invasion, and death.

Methods and results

We evaluated the expression level of SNHG4 in clinical samples, including CRC tissues, adenomatous colorectal polyps (ACP), and their marginals. SNHG4-silenced SW1116 cells were used to evaluate the cell viability, cycle arrest, invasion, and apoptosis using MTT assay, scratching, flow cytometry, and immunoblotting. We also predicted molecular networks related to the SNHG4 involvement in CRC development. Results showed that SNHG4 expresses in cancerous tissues significantly higher than in polyps and marginals. This overexpression discriminated CRC from marginals and ACP with a suitable prognostic potential. Silencing of SNHG4 arrested the cell cycle at S and G2 phases and promoted early apoptosis in SW1116. It affected the active form of MMP2 and prevented cell invasion. Sponging of miRNAs which promotes the choline metabolism is the probable mechanism of SNHG4 involvement in CRC.

Conclusions

In conclusion, SNHG4 promotes CRC by dysregulating apoptosis and cell migration, and shows significant prognostic potential for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Khan S, Masood M, Gaur H, Ahmad S, Syed MA (2021) Long non-coding RNA: an immune cells perspective. Life Sci 271:119152. https://doi.org/10.1016/j.lfs.2021.119152

    Article  CAS  PubMed  Google Scholar 

  2. Khodayi-Shahrak M, Khalaj-Kondori M, Hosseinpour Feizi MA, Talebi M (2022) Insights into the mechanisms of non-coding RNAs’ implication in the pathogenesis of Alzheimer’s disease. EXCLI J 21:921–940. https://doi.org/10.17179/excli2022-5006

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khajehdehi M, Khalaj-Kondori M, Hosseinpour Feizi MA (2022) Expression profiling of cancer-related long non-coding RNAs revealed upregulation and biomarker potential of HAR1B and JPX in colorectal cancer. Mol Biol Rep 49(7):6075–6084. https://doi.org/10.1007/s11033-022-07396-z

    Article  CAS  PubMed  Google Scholar 

  4. Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M (2021) Long noncoding RNAs in gastrointestinal Cancer: Tumor suppression Versus Tumor Promotion. Dig Dis Sci 66(2):381–397. https://doi.org/10.1007/s10620-020-06200-x

    Article  CAS  PubMed  Google Scholar 

  5. Khodayi M, Khalaj-Kondori M, Hoseinpour Feizi MA, Jabarpour Bonyadi M, Talebi M (2022) Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease. Excli j 21:772–785. https://doi.org/10.17179/excli2022-4764

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P (2020) lncRNA-miRNA-mRNA interaction network for colorectal cancer; an in silico analysis. Comput Biol Chem 89:107370. https://doi.org/10.1016/j.compbiolchem.2020.107370

    Article  CAS  PubMed  Google Scholar 

  7. Biagioni A, Tavakol S, Ahmadirad N, Zahmatkeshan M, Magnelli L, Mandegary A et al (2021) Small nucleolar RNA host genes promoting epithelial–mesenchymal transition lead cancer progression and metastasis. IUBMB Life 73(6):825–842. https://doi.org/10.1002/iub.2501

    Article  CAS  PubMed  Google Scholar 

  8. Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J et al (2021) Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 21(1):583. https://doi.org/10.1186/s12935-021-02292-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiao Y, Li Y, Jia B, Chen Q, Pan G, Hua F et al (2020) The prognostic value of lncRNA SNHG4 and its potential mechanism in liver cancer. Biosci Rep 40(1). https://doi.org/10.1042/bsr20190729

  10. Cao J, Xiao C, Fong CTH, Gong J, Li D, Li X et al (2022) Expression and Regulatory Network analysis of function of small nucleolar RNA host gene 4 in Hepatocellular Carcinoma. J Clin Transl Hepatol 10(2):297–307. https://doi.org/10.14218/jcth.2020.00175

    Article  PubMed  Google Scholar 

  11. Cheng XB, Zhang T, Zhu HJ, Ma N, Sun XD, Wang SH et al (2021) Knockdown of lncRNA SNHG4 suppresses gastric cancer cell proliferation and metastasis by targeting miR-204-5p. Neoplasma 68(3):546–556. https://doi.org/10.4149/neo_2021_200914N981

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Liu T, Sun L, Zhang S, Dong G (2020) Long noncoding RNA SNHG4 promotes renal cell carcinoma tumorigenesis and invasion by acting as ceRNA to sponge mir-204-5p and upregulate RUNX2. Cancer Cell Int 20(1):514. https://doi.org/10.1186/s12935-020-01606-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang ZY, Duan Y, Wang P (2020) SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5. J Cell Physiol 235(4):3916–3927. https://doi.org/10.1002/jcp.29285

    Article  CAS  PubMed  Google Scholar 

  14. Tang Y, Wu L, Zhao M, Zhao G, Mao S, Wang L et al (2019) LncRNA SNHG4 promotes the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of lung cancer cells by regulating miR-98-5p. Biochem Cell Biol 97(6):767–776. https://doi.org/10.1139/bcb-2019-0065

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Quan Q (2021) The long non-coding RNA SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development of non-small cell lung cancer. Mol Ther Oncolytics 20:634–645. https://doi.org/10.1016/j.omto.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Hong J, Wijayakulathilaka W (2019) Long non-coding RNA SNHG4 promotes cervical cancer progression through regulating c-Met via targeting miR-148a-3p. Cell Cycle 18(23):3313–3324. https://doi.org/10.1080/15384101.2019.1674071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang YF, Lu L, Shen HL, Lu XX (2020) LncRNA SNHG4 promotes osteosarcoma proliferation and migration by sponging miR-377-3p. Mol Genet Genomic Med 8(8):e1349. https://doi.org/10.1002/mgg3.1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Guo JF, Zhang ML, Li AM (2020) LncRNA SNHG4 promotes neuroblastoma proliferation, migration, and invasion by sponging miR-377-3p. Neoplasma 67(5):1054–1062. https://doi.org/10.4149/neo_2020_191023N1081

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Z, Wang W (2020) LncRNA SNHG4 regulates miR-10a/PTEN to inhibit the proliferation of acute myeloid leukemia cells. Hematology 25(1):160–164. https://doi.org/10.1080/16078454.2020.1754636

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Tian W, Wu L, Wei Z, Li W, Xu Y et al (2020) LncRNA SNHG4 regulates miR-138/c-Met axis to promote the proliferation of glioblastoma cells. NeuroReport 31(9):657–662. https://doi.org/10.1097/wnr.0000000000001469

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Zhuo Y, Li J, Zhang M, Wang R, Lin L (2021) Long non-coding RNA SNHG4 is a potential Diagnostic and Prognostic Indicator in Non-Small Cell Lung Cancer. Ann Clin Lab Sci 51(5):654–662

    CAS  PubMed  Google Scholar 

  22. Khalaj-Kondori M, Hosseinnejad M, Hosseinzadeh A, Behroz Sharif S, Hashemzadeh S (2020) Aberrant hypermethylation of OGDHL gene promoter in sporadic colorectal cancer. Curr Probl Cancer 44(1):100471. https://doi.org/10.1016/j.currproblcancer.2019.03.001

    Article  PubMed  Google Scholar 

  23. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P (2021) Long non-coding RNA AGAP2-AS1 is up regulated in colorectal cancer. Nucleosides Nucleotides Nucleic Acids 40(8):829–844. https://doi.org/10.1080/15257770.2021.1956530

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Zhu W, Qiu J, Chen F (2021) lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging mir-204-5p in gastric cancer. Mol Med Rep 23(1). https://doi.org/10.3892/mmr.2020.11724

  25. Zhou N, Chen Y, Yang L, Xu T, Wang F, Chen L et al (2021) LncRNA SNHG4 promotes malignant biological behaviors and immune escape of colorectal cancer cells by regulating the miR-144-3p/MET axis. Am J Transl Res 13(10):11144–11161

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Z, Tan F, Pei Q, Li C, Zhou Y, Li Y et al (2021) lncRNA SNHG4 modulates colorectal cancer cell cycle and cell proliferation through regulating miR-590-3p/CDK1 axis. Aging 13(7):9838–9858. https://doi.org/10.18632/aging.202737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song M, Yin Y, Zhang J, Zhang B, Bian Z, Quan C et al (2021) Correction to: MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell 12(8):668–670. https://doi.org/10.1007/s13238-021-00826-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vychytilova-Faltejskova P, Merhautova J, Machackova T, Gutierrez-Garcia I, Garcia-Solano J, Radova L et al (2017) MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis 6(11):399. https://doi.org/10.1038/s41389-017-0006-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren XL, He GY, Li XM, Men H, Yi LZ, Lu GF et al (2016) MicroRNA-206 functions as a tumor suppressor in colorectal cancer by targeting FMNL2. J Cancer Res Clin Oncol 142(3):581–592. https://doi.org/10.1007/s00432-015-2053-8

    Article  CAS  PubMed  Google Scholar 

  30. Hu F, Min J, Cao X, Liu L, Ge Z, Hu J et al (2016) MiR-363-3p inhibits the epithelial-to-mesenchymal transition and suppresses metastasis in colorectal cancer by targeting Sox4. Biochem Biophys Res Commun 474(1):35–42. https://doi.org/10.1016/j.bbrc.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  31. Eldaly MN, Metwally FM, Shousha WG, El-Saiid AS, Ramadan SS (2020) Clinical potentials of miR-576-3p, miR-613, NDRG2 and YKL40 in Colorectal Cancer Patients. Asian Pac J Cancer Prev 21(6):1689–1695. https://doi.org/10.31557/apjcp.2020.21.6.1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang JL, Zheng HF, Li K, Zhu YP (2022) Mir-495-3p depresses cell proliferation and migration by downregulating HMGB1 in colorectal cancer. World J Surg Oncol 20(1):101. https://doi.org/10.1186/s12957-022-02500-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding Q, Zhang W, Cheng C, Mo F, Chen L, Peng G et al (2020) Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo. J Cell Physiol 235(3):2911–2924. https://doi.org/10.1002/jcp.29197

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Zhang T, Sun W, Wang Z, Zuo D, Zhou Z et al (2016) Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 7(6):e2247–e. https://doi.org/10.1038/cddis.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Chen W, Zhang P, Li N (2006) Topoisomerase II trapping agent teniposide induces apoptosis and G2/M or S phase arrest of oral squamous cell carcinoma. World J Surg Oncol 4:41. https://doi.org/10.1186/1477-7819-4-41

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417. https://doi.org/10.1038/s41571-020-0341-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bai HL, Kang CM, Sun ZQ, Li XH, Dai XY, Huang RY et al (2020) TTDA inhibited apoptosis by regulating the p53-Bax/Bcl2 axis in glioma. Exp Neurol 331:113380. https://doi.org/10.1016/j.expneurol.2020.113380

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275(5303):1129–1132. https://doi.org/10.1126/science.275.5303.1129

    Article  CAS  PubMed  Google Scholar 

  39. Kharbanda S, Pandey P, Schofield L, Israels S, Roncinske R, Yoshida K et al (1997) Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci U S A 94(13):6939–6942. https://doi.org/10.1073/pnas.94.13.6939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Si L, Fu J, Liu W, Hayashi T, Nie Y, Mizuno K et al (2020) Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol Cell Biochem 463(1–2):189–201. https://doi.org/10.1007/s11010-019-03640-6

    Article  CAS  PubMed  Google Scholar 

  41. Freitas JT, Jozic I, Bedogni B (2021) Wound Healing Assay for Melanoma Cell Migration. Methods Mol Biol 2265:65–71. https://doi.org/10.1007/978-1-0716-1205-7_4

    Article  CAS  PubMed  Google Scholar 

  42. Zeng F, Yu N, Han Y, Ainiwaer J (2020) The long non-coding RNA MIAT/miR-139-5p/MMP2 axis regulates cell migration and invasion in non-small-cell lung cancer. J Biosci 45

  43. Wang X, Yang B, She Y, Ye Y (2018) The lncRNA TP73-AS1 promotes ovarian cancer cell proliferation and metastasis via modulation of MMP2 and MMP9. J Cell Biochem 119(9):7790–7799. https://doi.org/10.1002/jcb.27158

    Article  CAS  PubMed  Google Scholar 

  44. Zhu X, Luo C, Bu F, Lin K, Zhu Z (2020) Long non-coding RNA RP11-59H7.3 promotes cell proliferation and invasion metastasis in colorectal cancer by miR-139-5p/NOTCH1 axis. Aging 12(12):11653–11666. https://doi.org/10.18632/aging.103331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Shi H, Yao J, Li Y, Gao B, Zhang Y et al (2020) FAM225A facilitates colorectal cancer progression by sponging miR-613 to regulate NOTCH3. Cancer Med 9(12):4339–4349. https://doi.org/10.1002/cam4.3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu X, Zhu J, Tan T, Bu F, Zhao J, Luo C et al (2021) RP11-51O6.1 sponges miR-206 to accelerate colorectal cancer carcinogenesis and metastasis through upregulating YAP1. Carcinogenesis 42(7):984–994. https://doi.org/10.1093/carcin/bgab044

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Wu H, Zhang Y, Xiao X, Chu F, Zhang L (2022) Induction of lncRNA NORAD accounts for hypoxia-induced chemoresistance and vasculogenic mimicry in colorectal cancer by sponging the miR-495-3p/ hypoxia-inducible factor-1α (HIF-1α). Bioengineered 13(1):950–962. https://doi.org/10.1080/21655979.2021.2015530

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Peng C, Li J, Zhang D, Zhang C, Jin K et al (2022) Long non-coding RNA CCDC144NL-AS1 promotes cell proliferation by regulating the miR-363-3p/GALNT7 axis in colorectal cancer. J Cancer 13(3):752–763. https://doi.org/10.7150/jca.65885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M et al (2019) Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR Biomed 32(10):e4112–e. https://doi.org/10.1002/nbm.4112

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L et al (2014) Plasma choline metabolites and colorectal cancer risk in the women’s Health Initiative Observational Study. Cancer Res 74(24):7442–7452. https://doi.org/10.1158/0008-5472.Can-14-1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the kind cooperation of Dr. Ghalamfarsa and his coworkers in Yasuj University of Medical Sciences, Yasuj-Iran, mainly Mis. Khosravani in preparation of SW1116 colorectal cell line.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Mina Khajehdehi: Writing- Original draft preparation, Investigation, Software, Methodology. Mohammad Khalaj-Kondori: Supervision, Conceptualization, Methodology, Writing- Reviewing and Editing. Behzad Baradaran: Conceptualization, Methodology.

Corresponding author

Correspondence to Mohammad Khalaj-Kondori.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Ethics Committee of the University of Tabriz (IR.TABRIZU.REC.1398.027).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided informed consent for the publication of clinicopathological characteristics in Table 1.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehdehi, M., Khalaj-Kondori, M. & Baradaran, B. The siRNA-mediated knockdown of SNHG4 efficiently induced pro-apoptotic signaling and suppressed metastasis in SW1116 colorectal cancer cell line. Mol Biol Rep 50, 8995–9006 (2023). https://doi.org/10.1007/s11033-023-08742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08742-5

Keywords

Navigation