Skip to main content

Advertisement

Log in

Expression profiling of cancer-related long non-coding RNAs revealed upregulation and biomarker potential of HAR1B and JPX in colorectal cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aberrant expressions of long non-coding RNAs promote cancer development including colorectal cancer. Expression profiling of cancer-related lncRNAs may introduce new deregulated lncRNAs that might be recruited as novel platforms in diagnosis and therapy of CRC.

Methods and Results

In this study, we exploited the SBI Human LncProfiler qPCR Array to examine the expression pattern of 90 cancer-related lncRNAs in CRC samples. Among deregulated lncRNAs, HAR1B, JPX, and KRASP1- which were showed a significantly higher expression profile in aggressive CRC tumors- were selected for more validation. We found that HAR1B and JPX expression profiles may discriminate between adjacent, adenomatous colorectal polyps, and colorectal cancer samples. The area under the curve of near 0.7 and a sensitivity/specificity of more than 70.80%, respectively, claim a suitable cancer prognostic potential for these two lncRNAs, JPX and HAR1B. Further analysis revealed that HAR1B and JPX may contribute to CRC pathobiology through affecting the FOXO, ErbB, and Wnt/β-catenin signaling pathways.

Conclusions

Upregulated JPX and HAR1B lncRNAs may contribute to colorectal cancer pathobiology by affecting multiple cancer-related signaling pathways. They also potentially discriminate between CRC tumors, marginals, and adenomatous colorectal polyps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siddiqui H, Al-Ghafari A, Choudhry H, Al Doghaither H (2019) Roles of long non-coding RNAs in colorectal cancer tumorigenesis: A Review. Mol Clin Oncol 11(2):167–172. DOI: https://doi.org/10.3892/mco.2019.1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neve B, Jonckheere N, Vincent A, Van Seuningen I (2018) Epigenetic regulation by lncRNAs: an overview focused on UCA1 in colorectal cancer. Cancers 10(11):440. DOI: https://doi.org/10.3390/cancers10110440

    Article  CAS  PubMed Central  Google Scholar 

  3. Yang X, Duan B, Zhou X (2017) Long non-coding RNA FOXD2-AS1 functions as a tumor promoter in colorectal cancer by regulating EMT and Notch signaling pathway. Eur Rev Med Pharmacol Sci 21(16):3586–3591

    CAS  PubMed  Google Scholar 

  4. Forrest ME, Saiakhova A, Beard L, Buchner DA, Scacheri PC, LaFramboise T, Markowitz S, Khalil AM (2018) Colon Cancer-upregulated Long non-coding RNA lincDUSP regulates cell cycle genes and potentiates resistance to apoptosis. Sci Rep 8(1):1–12. DOI: https://doi.org/10.1038/s41598-018-25530-5

    Article  CAS  Google Scholar 

  5. Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M (2021) Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 66(2):381–397. DOI: https://doi.org/10.1007/s10620-020-06200-x

    Article  CAS  PubMed  Google Scholar 

  6. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P (2020) lncRNA-miRNA-mRNA interaction network for colorectal cancer; An in silico analysis. Comput Biol Chem 89:107370. DOI: https://doi.org/10.1016/j.compbiolchem.2020.107370

    Article  CAS  PubMed  Google Scholar 

  7. Shan Y, Ma J, Pan Y, Hu J, Liu B, Jia L (2018) LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 9(7):1–13. DOI: https://doi.org/10.1038/s41419-018-0759-7

    Article  CAS  Google Scholar 

  8. Liu B, Pan S, Xiao Y, Liu Q, Xu J, Jia L (2018) LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Experimental Clin Cancer Res 37(1):1–15. DOI: https://doi.org/10.1186/s13046-018-0994-x

    Article  CAS  Google Scholar 

  9. Jahangiri B, Khalaj-Kondori M, Asadollahi E, Sadeghizadeh M (2019) Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J Cell Commun Signal 13(1):53–64. DOI: https://doi.org/10.1007/s12079-018-0471-5

    Article  PubMed  Google Scholar 

  10. Luo J, Qu J, Wu D-K, Lu Z-L, Sun Y-S, Qu Q (2017) Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 8(13):22187. DOI: https://doi.org/10.18632/oncotarget.14728

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bai Z, Wang J, Wang T, Li Y, Zhao X, Wu G, Yang Y, Deng W, Zhang Z (2017) The MiR-495/Annexin A3/P53 axis inhibits the invasion and EMT of colorectal cancer cells. Cell Physiol Biochem 44(5):1882–1895. DOI: https://doi.org/10.1159/000485877

    Article  CAS  PubMed  Google Scholar 

  12. Slaby O (2016) Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv Exp Med Biol 937:153–170. DOI: https://doi.org/10.1007/978-3-319-42059-2_8

    Article  CAS  PubMed  Google Scholar 

  13. Shen J, Siegel AB, Remotti H, Wang Q, Shen Y, Santella RM (2015) Exploration of deregulated long non-coding RNAs in association with hepatocarcinogenesis and survival. Cancers 7(3):1847–1862. DOI: https://doi.org/10.3390/cancers7030865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X (2020) lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer 19(1):1–17. DOI: https://doi.org/10.1186/s12943-020-1133-9

    Article  CAS  Google Scholar 

  15. Jin M, Ren J, Luo M, You Z, Fang Y, Han Y, Li G, Liu H (2020) Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis 41(5):634–645. DOI: https://doi.org/10.1093/carcin/bgz125

    Article  CAS  PubMed  Google Scholar 

  16. Lin X-q, Huang Z-m, Chen X, Wu F, Wu W (2018) XIST induced by JPX suppresses hepatocellular carcinoma by sponging miR-155-5p. Yonsei Med J 59(7):816–826. DOI: https://doi.org/10.3349/ymj.2018.59.7.816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma W, Wang H, Jing W, Zhou F, Chang L, Hong Z, Liu H, Liu Z, Yuan Y (2017) Downregulation of long non-coding RNAs JPX and XIST is associated with the prognosis of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 41(2):163–170. DOI: https://doi.org/10.1016/j.clinre.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Guglas K, Kolenda T, Teresiak A, Kopczyńska M, Łasińska I, Mackiewicz J, Mackiewicz A, Lamperska K (2018) lncRNA expression after irradiation and chemoexposure of HNSCC cell lines. Non-coding RNA 4(4):33. DOI: https://doi.org/10.3390/ncrna4040033

    Article  CAS  PubMed Central  Google Scholar 

  19. Morotti A, Verdelli C, Guarnieri V, Muscarella LA, Silipigni R, Guerneri S, Vicentini L, Vaira V (2019) Corbetta. Menin and EZH2 activities modulate the expression of the long non-coding RNA HAR1B in parathyroid tumors. 21st European Congress of Endocrinology. BioScientifica

  20. Liu H, Ye T, Yang X, Lv P, Wu X, Zhou H, Zeng J, Tang K, Ye Z (2020) A Panel of Four-lncRNA Signature as a Potential Biomarker for Predicting Survival in Clear Cell Renal Cell Carcinoma. J Cancer 11(14):4274. DOI: https://doi.org/10.7150/jca.40421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mullany LE, Slattery ML (2019) The functional role of miRNAs in colorectal cancer: insights from a large population-based study. Cancer biology & medicine 16(2):211. DOI: https://doi.org/10.20892/j.issn.2095-3941.2018.0514

    Article  CAS  Google Scholar 

  22. Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H, Wang X (2019) Long noncoding RNA CASC2 enhances berberineinduced cytotoxicity in colorectal cancer cells by silencing BCL2. Mol Med Rep 20(2):995–1006. DOI: https://doi.org/10.3892/mmr.2019.10326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, Zhang H, Liu Y, Han D, Zhang N (2020) LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 19:1–20. DOI: https://doi.org/10.1186/s12943-020-01206-5

    Article  CAS  Google Scholar 

  24. Rahmoon MA, Youness RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI (2017) MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors 35(2–3):76–87. DOI: https://doi.org/10.1080/08977194.2017.1354859

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, Zhang S, Wang Z, Liao J (2017) Down-regulation of miR-342-3p in hepatocellular carcinoma tissues and its prognostic significance. Eur Rev Med Pharmacol Sci 21(9):2098–2102

    CAS  PubMed  Google Scholar 

  26. Wei H, Hu J, Pu J, Tang Q, Li W, Ma R, Xu Z, Tan C, Yao T, Wu X (2019) Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells. Int Immunopharmacol 73:72–80. DOI: https://doi.org/10.1016/j.intimp.2019.04.049

    Article  CAS  PubMed  Google Scholar 

  27. Dou G-x, Zhang J-n, Wang P, Wang J-l, Sun G-b (2019) Long Intergenic Non-Protein-Coding RNA 01138 Accelerates Tumor Growth and Invasion in Gastric Cancer by Regulating miR-1273e. Med Sci monitor: Int Med J experimental Clin Res 25:2141. DOI: https://doi.org/10.12659/MSM.914248

    Article  CAS  Google Scholar 

  28. Yin G, Tian P, BuHe A, Yan W, Li T, Sun Z (2020) LncRNA LINC00689 Promotes the Progression of Gastric Cancer Through Upregulation of ADAM9 by Sponging miR-526b-3p. Cancer Manage Res 12:4227–4239

    Article  CAS  Google Scholar 

  29. Zhang PF, Wu J, Wu Y, Huang W, Liu M, Dong ZR, Xu BY, Jin Y, Wang F, Zhang XM (2019) The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342‐3p target sequence. J Cell Physiol 234(7):10157–10165

    Article  CAS  Google Scholar 

  30. Yan Y, Zhang D, Lei T, Zhao C, Han J, Cui J, Wang Y (2019) MicroRNA-33a-5p suppresses colorectal cancer cell growth by inhibiting MTHFD2. Clin Exp Pharmacol Physiol 46(10):928–936. DOI: https://doi.org/10.1111/1440-1681.13125

    Article  CAS  PubMed  Google Scholar 

  31. Tang JT, Zhao J, Sheng W, Zhou JP, Dong Q, Dong M (2019) Ectopic expression of miR-944 impairs colorectal cancer cell proliferation and invasion by targeting GATA binding protein 6. J Cell Mol Med 23(5):3483–3494. DOI: https://doi.org/10.1111/jcmm.14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou C, Zhao J, Gu Y, Li Q, Tang S, Wu Y, Tang J, Zhang C, Li Z, Zhang Y (2020) LINC01559 accelerates pancreatic cancer cell proliferation and migration through YAP-mediated pathway. J Cell Physiol 235(4):3928–3938. DOI: https://doi.org/10.1002/jcp.29288

    Article  CAS  PubMed  Google Scholar 

  33. Ma T, Chen H, Wang P, Yang N, Bao J (2020) Downregulation of lncRNA ZEB1-AS1 Represses Cell Proliferation, Migration, and Invasion Through Mediating PI3K/AKT/mTOR Signaling by miR-342-3p/CUL4B Axis in Prostate Cancer. Cancer Biother Radiopharm. DOI: https://doi.org/10.1089/cbr.2019.3123

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peng X, Gao J, Cai C, Zhang Y (2020) LncRNA LINC01503 aggravates the progression of cervical cancer through sponging miR-342-3p to mediate FXYD3 expression. Biosci Rep 40(6). DOI: https://doi.org/10.1042/BSR20193371

  35. Guan X, Zong Z-h, Liu Y, Chen S, Wang L-l, Zhao Y (2019) circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Therapy-Nucleic Acids 18:882–892. DOI: https://doi.org/10.1016/j.omtn.2019.09.032

    Article  CAS  Google Scholar 

  36. Guan X, Guan Y (2020) miR-145-5p attenuates paclitaxel resistance and suppresses the progression in drug-resistant breast cancer cell lines. Neoplasma 67(5):972–981. DOI: https://doi.org/10.4149/neo_2020_190622N536

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Duan L, Liu H, Zhang L (2019) Long noncoding RNA LINC01296 induces non-small cell lung cancer growth and progression through sponging miR-5095. Am J translational Res 11(2):895

    CAS  Google Scholar 

  38. Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X, Gong Z (2020) lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer 19(1):9. DOI: https://doi.org/10.1186/s12943-020-1133-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren J, Yang Y, Xue J, Xi Z, Hu L, Pan S-J, Sun Q (2018) Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun 496(2):712–718. DOI: https://doi.org/10.1016/j.bbrc.2018.01.109

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, Li X, Xie X, Wang J, Huang M, Sun X, Ke Y (2019) circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res 38(1):398. DOI: https://doi.org/10.1186/s13046-019-1376-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song X, Jin Y, Yan M, Zhang Y, Chen B (2019) MicroRNA3423p functions as a tumor suppressor by targeting LIM and SH3 protein 1 in oral squamous cell carcinoma. Oncol Lett 17(1):688–696. DOI: https://doi.org/10.3892/ol.2018.9637

    Article  CAS  PubMed  Google Scholar 

  42. Lan X, Liu X, Sun J, Yuan Q, Li J (2019) CircRAD23B facilitates proliferation and invasion of esophageal cancer cells by sponging miR-5095. Biochem Biophys Res Commun 516(2):357–364. DOI: https://doi.org/10.1016/j.bbrc.2019.06.044

    Article  CAS  PubMed  Google Scholar 

  43. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W (2017) FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci 13(7):815–827. DOI: https://doi.org/10.7150/ijbs.20052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiramongkol Y, Lam EW (2020) FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev 39(3):681–709. DOI: https://doi.org/10.1007/s10555-020-09883-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813(11):1978–1986. DOI: https://doi.org/10.1016/j.bbamcr.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  46. Gajos-Michniewicz A, Czyz M (2020) WNT Signaling in Melanoma. Int J Mol Sci 21(14). DOI: https://doi.org/10.3390/ijms21144852

  47. Cheng X, Xu X, Chen D, Zhao F, Wang W (2019) Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 110:473–481. DOI: https://doi.org/10.1016/j.biopha.2018.11.082

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z (2017) ErbB Receptors and Cancer. Methods Mol Biol 1652:3–35. DOI: https://doi.org/10.1007/978-1-4939-7219-7_1

    Article  CAS  PubMed  Google Scholar 

  49. Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X (2017) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8(3):3980–4000. DOI: https://doi.org/10.18632/oncotarget.14012

    Article  PubMed  Google Scholar 

  50. Dong W, Cao Z, Pang Y, Feng T, Tian H (2019) CARF, As An Oncogene, Promotes Colorectal Cancer Stemness By Activating ERBB Signaling Pathway. Onco Targets Ther 12:9041–9051. DOI: https://doi.org/10.2147/ott.S225733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Khalaj, as the project administrator, prepared the resources and has played a key role in the planning and methodology of the project with the cooperation of Khajehdehi. Writing- Original draft preparation, Investigation, and Software and Formal analysis has been done by Khajehdehi. Khalaj and Hosseinpour feizi contributed to the Review & Editing of the writing.

Corresponding author

Correspondence to Mohammad Khalaj-Kondori.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This study approved by the Ethics Committee of the University of Tabriz (IR.TABRIZU.REC.1398.027). It is also under the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehdehi, M., Khalaj-Kondori, M. & Hosseinpour Feizi, M.A. Expression profiling of cancer-related long non-coding RNAs revealed upregulation and biomarker potential of HAR1B and JPX in colorectal cancer. Mol Biol Rep 49, 6075–6084 (2022). https://doi.org/10.1007/s11033-022-07396-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07396-z

Keywords

Navigation