Skip to main content

Advertisement

Log in

Establishment of a novel signature to predict prognosis and immune characteristics of pancreatic cancer based on necroptosis-related long non-coding RNA

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Necroptosis plays an important role in tumorigenesis and tumour progression. Long noncoding RNAs (lncRNAs) have been proven to be regulatory factors of necroptosis in various tumours. However, the real role of necroptosis-related lncRNAs (NRLs) and their potential to predict the prognosis of pancreatic cancer (PC) remain largely unclear. The goal of this study was to identify NRLs and create a predictive risk signature in PC, explore its prognostic predictive performance, and further assess immunotherapy and chemotherapy responses.

Methods

RNA sequencing data, tumour mutation burden (TMB) data, and clinical profiles of 178 PC patients were downloaded from The Cancer Genome Atlas (TCGA) database. NRLs were identified using Pearson correlation analysis. Then, patients were divided into the training set and the validation set at a 1:1 ratio. Subsequently, Cox and LASSO regression analyses were conducted to establish a prognostic NRL signature in the training set and validation set. The predictive efficacy of the 5-NRL signature was assessed by survival analysis, nomogram, Cox regression, clinicopathological feature correlation analysis, and receiver operating characteristic (ROC) curve analysis. Furthermore, correlations between the risk score (RS) and immune cell infiltration, immune checkpoint molecules, somatic gene mutations, and anticancer drug sensitivity were analysed. Finally, we used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to validate the 5-NRLs.

Results

A 5-NRL signature was established to predict the prognosis of PC, including LINC00857, AL672291.1, PTPRN2-AS1, AC141930.2, and MEG9. The 5-NRL signature demonstrated a high degree of predictive power according to ROC and Kaplan‒Meier curves and was revealed to be an independent prognostic risk factor via stratified survival analysis. Nomogram and calibration curves indicated the clinical adaptability of the signature. Immune-related pathways were linked to the 5-NRL signature according to enrichment analysis. Additionally, immune cell infiltration, immune checkpoint molecules, somatic gene mutations and the half-maximal inhibitory concentration (IC50) of chemotherapeutic agents were significantly different between the two risk subgroups. These results suggested that our model can be used to evaluate the effectiveness of immunotherapy and chemotherapy, providing a potential new strategy for treating PC.

Conclusions

The novel 5-NRL signature is helpful for assessing the prognosis of PC patients and improving therapy options, so it can be further applied clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Zhu H, Li T, Du Y, Li M (2018) Pancreatic cancer: challenges and opportunities. Bmc Med 16:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo K, Wang X, Zhang X, Liu Z, Huang S, Li R (2022) The value of circulating tumor cells in the prognosis and treatment of pancreatic cancer. Front Oncol 12:933645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, Oberst A, Quarato G, Low J, Cripps JG, Chen T, Green DR (2016) Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ 23:76–88

    Article  CAS  PubMed  Google Scholar 

  5. Moujalled DM, Cook WD, Murphy JM, Vaux DL (2014) Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 5:e1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grootjans S, Vanden BT, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24:1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  8. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira DSR, Reis ESC, Green DR, Oberst A, Albert ML (2015) RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M, Taunk PS, Wu N, Su W, Wu J, Ahsan A, Kurz E, Chen T, Yaboh I, Li F, Gutierrez J, Diskin B, Hundeyin M, Reilly M, Lich JD, Harris PA, Mahajan MK, Thorpe JH, Nassau P, Mosley JE, Leinwand J, Kochen RJ, Mishra A, Aykut B, Glacken M, Ochi A, Verma N, Kim JI, Vasudevaraja V, Adeegbe D, Almonte C, Bagdatlioglu E, Cohen DJ, Wong KK, Bertin J, Miller G (2020) RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 38:585–590

    Article  CAS  PubMed  Google Scholar 

  12. Lv W, Wang Y, Zhao C, Tan Y, Xiong M, Yi Y, He X, Ren Y, Wu Y, Zhang Q (2021) Identification and validation of m6A-Related lncRNA signature as potential predictive biomarkers in breast cancer. Front Oncol 11:745719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo L, Li H, Li W, Tang J (2020) Construction and investigation of a combined hypoxia and stemness index lncRNA-associated ceRNA regulatory network in lung adenocarcinoma. Bmc Med Genom 13:166

    Article  CAS  Google Scholar 

  14. Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza AA, Momeny M, Alahari SK (2020) Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 39:953–974

    Article  CAS  PubMed  Google Scholar 

  15. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, Zhang X, Huang Y, Zhang R, Wei J, Ali DW, Michalak M, Chen XZ, Tang J (2020) LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 19:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z (2021) Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 7:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang N, Zhang X, Gu X, Li X, Shang L (2021) Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guan YX, Zhang MZ, Chen XZ, Zhang Q, Liu SZ, Zhang YL (2018) Lnc RNA SNHG20 participated in proliferation, invasion, and migration of breast cancer cells via miR-495. J Cell Biochem 119:7971–7981

    Article  CAS  PubMed  Google Scholar 

  20. Harari-Steinfeld R, Gefen M, Simerzin A, Zorde-Khvalevsky E, Rivkin M, Ella E, Friehmann T, Gerlic M, Zucman-Rossi J, Caruso S, Leveille M, Estall JL, Goldenberg DS, Giladi H, Galun E, Bromberg Z (2021) The lncRNA H19-Derived MicroRNA-675 promotes liver necroptosis by targeting FADD. Cancers (Basel) 13(3):411

    Article  CAS  PubMed  Google Scholar 

  21. Zhang H, Zhu C, He Z, Chen S, Li L, Sun C (2020) LncRNA PSMB8-AS1 contributes to pancreatic cancer progression via modulating miR-382-3p/STAT1/PD-L1 axis. J Exp Clin Cancer Res 39:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442:444–452

    Article  PubMed  Google Scholar 

  24. Guo X, Yin H, Chen Y, Li L, Li J, Liu Q (2016) TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints. Cell Death Dis 7:e2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C, He A, Liu S, He Q, Luo Y, He Z, Chen Y, Tao A, Yan J (2019) Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis 10:344

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu R, Yang F, Yin JY, Liu YZ, Zhang W, Zhou HH (2021) Influence of tumor immune infiltration on immune checkpoint inhibitor therapeutic efficacy: a computational retrospective study. Front Immunol 12:685370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, Meng Q, Liu J, Zhang B, Yu X, Shi S (2021) Role of tumor mutation burden-related signatures in the prognosis and immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Cell Int 21:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim DH, Marinov GK, Pepke S, Singer ZS, He P, Williams B, Schroth GP, Elowitz MB, Wold BJ (2015) Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16:88–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, Deng X, Jin H, Wang N, Wang C, Zhao F, Fang J, Yao M, Fan J, Qin W (2017) STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer 16:136

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Xu J, Liu X, Jiang J (2022) The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Discov 8:287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun CC, Zhu W, Li SJ, Hu W, Zhang J, Zhuo Y, Zhang H, Wang J, Zhang Y, Huang SX, He QQ, Li DJ (2020) FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med 12:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren EH, Deng YJ, Yuan WH, Zhang GZ, Wu ZL, Li CY, Xie QQ (2021) An Immune-Related long non-coding RNA signature to predict the prognosis of ewing’s sarcoma based on a machine learning iterative lasso regression. Front Cell Dev Biol 9:651593

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang YC, Wu YS, Hung CY, Wang SA, Young MJ, Hsu TI, Hung JJ (2018) USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun 9:3996

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang C, Huang H, Li Y, Zhuo T, Zhu L, Luo C, Wu Y, Qin S (2023) LncRNA PCAT6 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of lung adenocarcinoma cell by targeting miR-545-3p. Mol Biol Rep 50:3557–3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, Zeng W, Ma L, Xie J (2020) Immune-related lncRNA to construct novel signature and predict the immune landscape of human hepatocellular carcinoma. Mol Ther Nucl Acids 22:937–947

    Article  CAS  Google Scholar 

  37. Qi B, Liu H, Zhou Q, Ji L, Shi X, Wei Y, Gu Y, Mizushima A, Xia S (2021) An immune-related lncRNA signature for the prognosis of pancreatic adenocarcinoma. Aging 13:18806–18826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao Y, Liu J, Cai B, Chen Q, Wang G, Lu Z, Jiang K, Miao Y (2021) Development of epithelial-mesenchymal transition-related lncRNA signature for predicting survival and immune microenvironment in pancreatic cancerwithexperiment validation. Bioengineered 12:10553–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tay RY, Fernández-Gutiérrez F, Foy V, Burns K, Pierce J, Morris K, Priest L, Tugwood J, Ashcroft L, Lindsay CR, Faivre-Finn C, Dive C, Blackhall F (2019) Prognostic value of circulating tumour cells in limited-stage small-cell lung cancer: analysis of the concurrent once-daily versus twice-daily radiotherapy (CONVERT) randomised controlled trial. Ann Oncol 30:1114–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song Y, Liang Y, Zou Q, Zeng S, Lin H, Liu M, Liu X, Du J, Chen G, Zou L, Su W, Niu F (2021) LINC00857 promotes the proliferation of pancreatic cancer via MET, STAT3, and CREB. J Gastrointest Oncol 12:2622–2630

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cao PW, Liu L, Li ZH, Cao F, Liu FB (2022) Prognostic value of drug targets predicted using deep bioinformatic analysis of m6A-associated lncRNA-based pancreatic cancer model characteristics and its tumour microenvironment. Front Genet 13:853471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mo J, Cui Z, Wang Q, Zhang W, Li J, Wu S, Qian W, Zhou C, Ma Q, Wang Z, Wu Z (2022) Integrated analysis of necroptosis-related lncRNAs for prognosis and immunotherapy of patients with pancreatic adenocarcinoma. Front Genet 13:940794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nejati R, Goldstein JB, Halperin DM, Wang H, Hejazi N, Rashid A, Katz MH, Lee JE, Fleming JB, Rodriguez-Canales J, Blando J, Wistuba II, Maitra A, Wolff RA, Varadhachary GR, Wang H (2017) Prognostic significance of tumor-infiltrating lymphocytes in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant chemotherapy. Pancreas 46:1180–1187

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng B, Cao J, Wu W, Cao P, Huang C, Qiu Z (2021) M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther 29:1226–1238

    Article  CAS  PubMed  Google Scholar 

  45. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, Hiraoka N (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108:914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van der Heijden MS (2019) The cancer immunogram as a framework for personalized immunotherapy in urothelial cancer. Eur Urol 75:435–444

    Article  PubMed  Google Scholar 

  47. Pharaon RR, Xing Y, Agulnik M, Villaflor VM (2021) The role of immunotherapy to overcome resistance in viral-associated head and neck cancer. Front Oncol 11:649963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  49. Keenan TE, Burke KP, Van Allen EM (2019) Genomic correlates of response to immune checkpoint blockade. Nat Med 25:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiong Y, Kong X, Fang K, Sun G, Tu S, Wei Y, Ouyang Y, Wan R, Xiao W (2022) Establishment of a Novel signature to Predict Prognosis and Immune characteristics of pancreatic Cancer based on necroptosis-related long non-coding RNA. 20 September PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2067648/v1

Download references

Acknowledgements

The current study was supported by the National Natural Science Foundation of China (81860418), the Natural Science Foundation of Jiangxi Province (20202ACB206007). This manuscript has been preprinted in researchsquare ( https://www.researchsquare.com/article/rs-2067648/v1) [50].

Funding

The current study was supported by the National Natural Science Foundation of China (81860418), the Natural Science Foundation of Jiangxi Province (20202ACB206007).

Author information

Authors and Affiliations

Authors

Contributions

YX, XK, and WX designed the research. YX, KF, and GS performed the research. YX, ST, YW, YO, and RW analyzed the data. YX, XK, and WX wrote the paper. All authors contributed to the article and approved the submitted version. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Weidong Xiao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Kong, X., Fang, K. et al. Establishment of a novel signature to predict prognosis and immune characteristics of pancreatic cancer based on necroptosis-related long non-coding RNA. Mol Biol Rep 50, 7405–7419 (2023). https://doi.org/10.1007/s11033-023-08663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08663-3

Keywords

Navigation