Skip to main content
Log in

Comparative physiological, antioxidant and proteomic investigation reveal robust response to cold stress in Digitalis purpurea L

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background of the study

Digitalis purpurea (L) is an important medicinal plant growing at Alpine region of Himalayas and withstands low temperatures and harsh climatic conditions existing at high altitude. It serves as an ideal plant system to decipher the tolerance to cold stress (CS) in plants from high altitudes.

Methods and results

To understand the complexity of plant response to CS, we performed a comparative physiological and biochemical study complemented with proteomics in one-month-old D. purpurea grown at 25 °C (control) and 4 °C (CS). We observed an enhanced accumulation of different osmo-protectants (glycine betaine, soluble sugar and proline) and higher transcription (mRNA levels) of various antioxidant enzymes with an increased antioxidant enzyme activity in D. purpurea when exposed to CS. Furthermore, higher concentrations of non-enzymatic antioxidants (flavonoids, phenolics) was also associated with the response to CS. Differential proteomic analysis revealed the role of various proteins primarily involved in redox reactions, protein stabilization, quinone and sterol metabolism involved in CS response in D. purpurea..

Conclusion

Our results provide a framework for better understanding the physiological and molecular mechanism of CS response in D. purpurea at high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195(4):737–751

    Article  CAS  PubMed  Google Scholar 

  2. Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. Adv Genet 28:99–131

    Article  CAS  Google Scholar 

  3. Aslam M, Greaves JG, Jakada BH, Fakher B, Wang X, Qin Y (2022) AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. Plant Sci 320:111284

    Article  CAS  PubMed  Google Scholar 

  4. Jan N, Majeed U, Wani MA, Wani ZA, Chakraborty N, John R (2023) Analysis of physiological and proteomic changes in marigold (Calendula officinalis) in response to short term cold stress. S Afr J Bot 158:31–48

    Article  Google Scholar 

  5. Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126(1):45–51

    Article  CAS  Google Scholar 

  6. Ramazan S, Qazi HA, Dar ZA, John R (2021) Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol Plants 27(6):1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front Plant Sci 11:552969

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene. OsAPXa Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  9. Che Y, Zhang N, Zhu X, Li S, Wang S, Si H (2020) Enhanced tolerance of the transgenic potato plants overexpressing Cu/Zn superoxide dismutase to low temperature. Sci Hortic 261:108949

    Article  CAS  Google Scholar 

  10. Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol cell Proteomics 5(3):484–496

    Article  CAS  PubMed  Google Scholar 

  11. Olmstead RG, de Pamphilis CW, Wolfe AD et al (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361

    Article  CAS  PubMed  Google Scholar 

  12. Rahimtoola SH, Tak T (1996) The use of digitalis in heart failure. Curr Probl Cardiol 21:781–853

    Article  CAS  PubMed  Google Scholar 

  13. Holden M (1961) The breakdown of chlorophyll by chlorophyllase. Biochem J 78:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  15. Grieve C, Grattan S (1983) Rapid assay for determination of water-soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  16. Dey P, Harborne J (1990) Plant biochemistry/Edited by PM Dey and JB Harborne

  17. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  18. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol Elsevier, pp 152–178

  19. Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. https://doi.org/10.38212/2224-6614.2748

    Article  Google Scholar 

  20. Zhang HY, Jiang YN, He ZY, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purifed from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  PubMed  Google Scholar 

  22. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic acid Res 44:D733–D745

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Subba P, Kumar R, Gayali S et al (2013) Characterization of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13:1973–1992

    Article  CAS  PubMed  Google Scholar 

  25. Huynh ML, Russell P, Walsh B (2009) Tryptic digestion of in-gel proteins for mass spectrometry analysis. In: Tyther R, Sheehan D (eds) Two-dimensional electrophoresis protocols. Humana Press, NJ, pp 507–513

    Chapter  Google Scholar 

  26. Huang B, DaCosta M, Jiang Y (2014) Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Crit Rev Plant Sci 33:141–189

    Article  CAS  Google Scholar 

  27. Rahman IU, Hart R, Afzal A, Iqbal Z, Alqarawi AA, Abd Allah EF, et al (2019) Ecophysiological plasticity and cold stress adaptation in Himalayan alpine herbs: bistorta affinis and Sibbaldia procumbens. Plants 8(10):378

    Article  PubMed  Google Scholar 

  28. Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  29. Jiang X, Song Y, Xi X et al (2011) Physiological and biochemical responses to low temperature stress in hybrid clones of Populus ussuriensis Kom × P. deltoides Bartr. Afr J Biotechnol 10:19011–19024

    CAS  Google Scholar 

  30. Turan Ö, Ekmekçi Y (2011) Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiol Plant 33:67–78

    Article  CAS  Google Scholar 

  31. Vighi I, Benitez L, do Amaral M et al (2016) Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress. Genet Mol Res 15, gmr15048977

  32. Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433

    Article  CAS  PubMed  Google Scholar 

  33. Salesse-Smith CE, Sharwood RE, Busch FA, Stern DB (2020) Increased Rubisco content in maize mitigates chilling stress and speeds recovery. Plant Biotec J 18:1409–1420

    Article  CAS  Google Scholar 

  34. Jurczyk B, Pociecha E, Grzesiak M, Kalita K, Rapacz M (2016) Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne. J Plant Physiol 198:49–55

    Article  CAS  PubMed  Google Scholar 

  35. Strommer J (2011) The plant ADH gene family. Plant J 66:128–142

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Xu J, Li J, Hu X (2019) NO is involved in JA-and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato. Environ Exp Bot 161:334–343

    Article  CAS  Google Scholar 

  37. Song Y, Liu L, Wei Y, Li G, Yue X, An L (2016) Metabolite profiling of adh1 mutant response to cold stress in Arabidopsis. Front Plant Sci 7:2072

    PubMed  Google Scholar 

  38. Wang Y, Shao L, Shi S, Harris RJ, Spellman MW, Stanley P, Haltiwanger RS (2001) Modification of epidermal growth factor-like repeats with O-fucose: molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J Biol Chem 276:40338–40345

    Article  CAS  PubMed  Google Scholar 

  39. Zhao M, Jin J, Gao T et al (2019) Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Front Plant Sci 10:1675

    Article  PubMed  PubMed Central  Google Scholar 

  40. Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  CAS  PubMed  Google Scholar 

  41. Jan N, Qazi HA, Raja V, John RJ (2019) Proteomics: A tool to decipher cold tolerance. Theor Exp Plant Physiol 31(1):183–213

    Article  CAS  Google Scholar 

  42. Li H, Liu ZW, Wu ZJ, Wang YX, Teng RM, Zhuang JJH (2018) Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. Hortic Res 5:1–13

    Article  Google Scholar 

  43. Singh B, Mishra R, Agarwal PK, Goswami M, Nair S, Sopory S, Reddy M (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun 320:23–530

    Article  Google Scholar 

  44. Ristic Z, Bukovnik U, Momcilovic I, Fu J, Prasad PVV (2008) Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J Plant Physiol 165:192–202

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Peng L, Gao X, Liu Y, Liu Z, Li X, Yang Y, Wang JJPCR (2020) AtPPRT3, a novel E3 ubiquitin ligase, plays a positive role in ABA signaling. Plant Cell Rep 39:1467–1478

    Article  CAS  PubMed  Google Scholar 

  46. Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang JH, Wang LJ, Pan QH, Wang YZ, Zhan JC, Huang WD (2008) Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Sci Hort 117:231–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for their financial support from the Research Science and Engineering Board (SERB), Department of Science and Technology, India (No: YSS/2015/000364) and SB/SO/BB/066/2013. NJ acknowledges funding by DST (SR/WOS-A/LS-85/2016).

Funding

This article was funded by DST, SR/WOS-A/LS-85/2016, Nelofer Jan, SERB, YSS/2015/000364, Hilal Ahmad Qazi.

Author information

Authors and Affiliations

Authors

Contributions

NJ and MAW did protein isolation and proteomic analysis; UMW did the real time analysis; HAQ did the physiology work; RJ conceived the idea, supervised the work and edited and finalized the manuscript.

Corresponding author

Correspondence to Riffat John.

Ethics declarations

Competing interest

Authors declare no conflict of interests.

Ethical approval

The study does not require any ethics approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 3141 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, N., Wani, U.M., Wani, M.A. et al. Comparative physiological, antioxidant and proteomic investigation reveal robust response to cold stress in Digitalis purpurea L. Mol Biol Rep 50, 7319–7331 (2023). https://doi.org/10.1007/s11033-023-08635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08635-7

Keywords

Navigation