Skip to main content

Advertisement

Log in

The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Estrogen receptor (ER) is a transcription factor that affects the expression of some genes involved in the progression and development of breast cancer (BC). Hesperetin (Hst) is a flavonoid that inhibits the proliferation of BC cells. In this study, we investigated the effect of Hst on the cell viability of MCF-7 cells and the gene expression of the ERα, ERβ, IL-6, Ps2, and Cyclin D1.

Methods

In this study, cell viability was determined by MTT assay. The cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, 200, and 400 µM) for 24 h, and IC50 was calculated. Real-time PCR was used to assess the expression of ERα, ERβ, pS2, Cyclin D1, and IL-6 mRNA. MCF-7 cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, and 200 µM) for 24 h. Real-time PCR was carried out using a Step One Real-Time PCR System (ABI, USA) and Amplicon SYBR Green reagents.

Results

The MTT assay revealed increased cytotoxicity with higher concentrations of Hst, and the IC50 was calculated at 200 µM. Real-time PCR analysis following treatment with Hst showed a significant increase in ERα gene expression at 25 µM of Hst and a decrease in expression at 50, 100, and 200 µM of Hst (p < 0.0001). ERβ gene expression significantly decreased across all concentrations of Hst (p < 0.0001), while IL-6 gene expression decreased significantly in all concentrations (p < 0.0001). pS2 gene expression increased significantly with all concentrations of Hst (p < 0.0001), while Cyclin D1 gene expression did not significantly decrease upon Hst exposure (p > 0.05).

Conclusions

The results of our study demonstrate that Hst has the ability to induce cell death in MCF-7 cells. Furthermore, it was observed that Hst reduces the expression of the ER gene and enhances its activity, which can affect the downstream pathways of the ER.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Thomssen C, Balic M, Harbeck N, Gnant M (2021) St. Gallen/Vienna 2021: a brief summary of the consensus discussion on customizing therapies for women with early breast cancer. Breast Care. https://doi.org/10.1159/000516114

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR (2014) Molecular classification of breast cancer. Virchows Arch. https://doi.org/10.1007/s00428-014-1593-7

    Article  PubMed  Google Scholar 

  3. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. https://doi.org/10.1186/s13293-017-0152-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jia M, Dahlman-Wright K, Gustafsson J-Ã (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. https://doi.org/10.1016/j.beem.2015.04.008

    Article  PubMed  Google Scholar 

  5. Tecalco-Cruz AC, Ramírez-Jarquín JO (2017) Mechanisms that increase stability of estrogen receptor alpha in breast cancer. Clin Breast Cancer. https://doi.org/10.1016/j.clbc.2016.07.015

    Article  PubMed  Google Scholar 

  6. Anbalagan M, Rowan BG (2015) Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2015.01.016

    Article  PubMed  Google Scholar 

  7. Treeck O, Juhasz-Boess I, Lattrich C, Horn F, Goerse R, Ortmann O (2008) Effects of exon-deleted estrogen receptor β transcript variants on growth, apoptosis and gene expression of human breast cancer cell lines. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-007-9749-7

    Article  PubMed  Google Scholar 

  8. Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genom. https://doi.org/10.2174/138920206779315737

    Article  Google Scholar 

  9. Crombach G, Ingenhorst A, Göhring UJ, Scharl A, Neuhaus W, Möbus V, Schaeffer HJ (1993) Expression of pS2 protein in breast cancer. Arch Gynecol Obstet. https://doi.org/10.1007/bf02766644

    Article  PubMed  Google Scholar 

  10. Landberg G, Roos G (1997) The cell cycle in breast cancer. Apmis. https://doi.org/10.1111/j.1699-0463.1997.tb05056.x

    Article  PubMed  Google Scholar 

  11. Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, Pestell RG (2014) Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs. https://doi.org/10.1517/13543784.2014.867017

    Article  PubMed  Google Scholar 

  12. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. https://doi.org/10.1016/j.nutres.2004.07.005

    Article  Google Scholar 

  13. Nijveldt RJ, Van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. https://doi.org/10.1093/ajcn/74.4.418

    Article  PubMed  Google Scholar 

  14. Kim GD (2014) Hesperetin inhibits vascular formation by suppressing of the PI3K/AKT, ERK, and p38 MAPK signaling pathways. Prev Nutr Food Sci. https://doi.org/10.3746/pnf.2014.19.4.299

    Article  PubMed  PubMed Central  Google Scholar 

  15. Choi EJ (2007) Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. https://doi.org/10.1080/01635580701419030

    Article  PubMed  Google Scholar 

  16. Jeong H-J, Shin YG, Kim I-H, Pezzuto JM (1999) Inhibition of aromatase activity by flavonoids. Arch Pharm Res. https://doi.org/10.1007/BF02976369

    Article  PubMed  Google Scholar 

  17. So FV, Guthrie N, Chambers AF, Carroll KK (1997) Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. https://doi.org/10.1016/s0304-3835(96)04557-0

    Article  PubMed  Google Scholar 

  18. Flaherty KT (2006) Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-05-2505

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langer SW (2014) Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res. https://doi.org/10.2147/cmar.S47238

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tekin G, Ozturk BR (2017) Effects of quercetin and hesperetin on MCF-7 cell proliferation by using real-time cell analyzer. J Basic Clin Pharm 8:121–126

  21. Palit S, Kar S, Sharma G, Das PK (2015) Hesperetin Induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. https://doi.org/10.1002/jcp.24818

    Article  PubMed  Google Scholar 

  22. Abusoglu G, Ozturk B (2020) Effect of static magnetic field with quercetin and hesperetin on MCF-7 and MDA MB-231 breast cancer cells. Turk J Biochem 45:833–841

    Article  CAS  Google Scholar 

  23. Nurhayati IP, Khumaira A, Ilmawati GPN, Meiyanto E, Hermawan ACytotoxic (2020) Antimetastatic activity of hesperetin and doxorubicin combination toward Her2 expressing breast cancer cells. Asian Pac J Cancer Prev. https://doi.org/10.31557/apjcp.2020.21.5.1259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rahideh ST, Shidfar F, Nourbakhsh M, Hoseini M, Koohdani F, Entezam M, Keramatipour M (2016) The individual or combinational effects of hesperetin and letrozole on the activity and expression of aromatase in MCF-7 cells. Cell Mol Biol (Noisy-le-grand) 62:38–43

    CAS  PubMed  Google Scholar 

  25. Pearce ST, Jordan VC (2004) The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol. https://doi.org/10.1016/j.critrevonc.2003.09.003

    Article  PubMed  Google Scholar 

  26. Cowley SM, Hoare S, Mosselman S, Parker MG (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem. https://doi.org/10.1074/jbc.272.32.19858

    Article  PubMed  Google Scholar 

  27. Pettersson K, Grandien K, Kuiper GG, Gustafsson JA (1997) Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol. https://doi.org/10.1210/mend.11.10.9989

    Article  PubMed  Google Scholar 

  28. Hua H, Zhang H, Kong Q, Jiang Y (2018) Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol. https://doi.org/10.1186/s40164-018-0116-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. https://doi.org/10.1124/mol.104.008367

    Article  PubMed  Google Scholar 

  30. Guttilla IK, Adams BD, White BA (2012) ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2011.12.001

    Article  PubMed  Google Scholar 

  31. Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S, Speirs V (2010) Estrogen receptor {beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res. https://doi.org/10.1158/0008-5472.Can-09-4104

    Article  PubMed  PubMed Central  Google Scholar 

  32. Susidarti RA, Nugroho AE, Meiyanto E (2014) Increasing sensitivity of MCF-7/DOX cells towards doxorubicin by hesperetin through suppression of P-glycoprotein expression. Indones J Pharm 25:84

    Article  Google Scholar 

  33. Zwergel C, Valente S, Mai ADNA (2016) Methyltransferases inhibitors from natural sources. Curr Top Med Chem. https://doi.org/10.2174/1568026615666150825141505

    Article  PubMed  Google Scholar 

  34. Tejada S, Pinya S, Martorell M, Capó X, Tur JA, Pons A, Sureda A (2018) Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem. https://doi.org/10.2174/0929867324666170718104412

    Article  PubMed  Google Scholar 

  35. Galien R, Garcia T (1997) Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. https://doi.org/10.1093/nar/25.12.2424

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269:12940–12946

    Article  CAS  PubMed  Google Scholar 

  37. Jo SH, Kim ME, Cho JH, Lee Y, Lee J, Park YD, Lee JS (2019) Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch Pharm Res. https://doi.org/10.1007/s12272-019-01174-5

    Article  PubMed  Google Scholar 

  38. Lin Z, Fu C, Yan Z, Wu Y, Zhan J, Lou Z, Pan J (2020) The protective effect of hesperetin in osteoarthritis: an in vitro and in vivo study. Food Funct. https://doi.org/10.1039/c9fo02552a

    Article  PubMed  Google Scholar 

  39. Elhennawy MG, Abdelaleem EA, Zaki AA, Mohamed WR (2021) Cinnamaldehyde and hesperetin attenuate TNBS-induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22730

    Article  PubMed  Google Scholar 

  40. Shirzad M, Heidarian E, Beshkar P, Gholami-Arjenaki M (2017) Biological effects of hesperetin on interleukin-6/phosphorylated signal transducer and activator of transcription 3 pathway signaling in prostate cancer PC3 cells. Pharmacogn Res. https://doi.org/10.4103/0974-8490.204655

    Article  Google Scholar 

  41. Stack G, Kumar V, Green S, Ponglikitmongkol M, Berry M, Rio MC et al (1988) Structure and function of the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat Res. https://doi.org/10.1007/978-1-4613-1733-3_8

    Article  PubMed  Google Scholar 

  42. van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, van den Berg M (2007) (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2007.03.016

    Article  PubMed  Google Scholar 

  43. Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids. https://doi.org/10.1016/s0039-128x(02)00110-1

    Article  PubMed  Google Scholar 

  44. de Leeuw R, Neefjes J, Michalides R (2011) A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer. https://doi.org/10.4061/2011/232435

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rio MC, Chambon PThe (1990) pS2 gene, mRNA, and protein: a potential marker for human breast cancer. Cancer Cells 2:269–274

    CAS  PubMed  Google Scholar 

  46. Li F, Ye L, Lin SM, Leung LK (2011) Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2011.06.024

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ye L, Chan FL, Chen S, Leung LK (2012) The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2011.07.003

    Article  PubMed  Google Scholar 

  48. Shen K, Xie J, Wang H, Zhang H, Yu M, Lu F, Xu H (2015) Cambogin induces caspase-independent apoptosis through the ROS/JNK pathway and epigenetic regulation in breast Cancer cells. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-14-1048

    Article  PubMed  Google Scholar 

  49. Lee KH, Yeh MH, Kao ST, Hung CM, Liu CJ, Huang YY, Yeh CC (2010) The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappab in human hepatocellular carcinoma cells. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2010.01.021

    Article  PubMed  Google Scholar 

  50. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. https://doi.org/10.1016/s0165-6147(00)01676-x

    Article  PubMed  Google Scholar 

  51. Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat. https://doi.org/10.1023/a:1006103831990

    Article  PubMed  Google Scholar 

  52. Hui R, Cornish AL, McClelland RA, Robertson JF, Blamey RW, Musgrove EA, Sutherland RL (1996) Cyclin D1 and estrogen receptor messenger RNA levels are positively correlated in primary breast cancer. Clin Cancer Res 2:923–928

    CAS  PubMed  Google Scholar 

  53. Castro-Rivera E, Samudio I, Safe S (2001) Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem. https://doi.org/10.1074/jbc.M103339200

    Article  PubMed  Google Scholar 

  54. Liu L, Xu DM, Cheng YY (2008) Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J Agric Food Chem. https://doi.org/10.1021/jf0723007

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Birjand University of medical sciences.

Author information

Authors and Affiliations

Authors

Contributions

MZ contributed to the study’s conception and design. MB performed material preparation, data collection, and analysis. SS wrote the first draft of the manuscript and all authors commented on previous versions. MZ and AZ read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Zangooei.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is cell line-based study. No ethical approval is required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bideh, M., Safari, S., Khedri, A. et al. The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha. Mol Biol Rep 50, 7225–7236 (2023). https://doi.org/10.1007/s11033-023-08616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08616-w

Keywords

Navigation