Skip to main content

Advertisement

Log in

Proteomics analysis of a tobacco variety resistant to brown spot disease and functional characterization of NbMLP423 in Nicotiana benthamiana

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Tobacco brown spot disease is an important disease caused by Alternaria alternata that affects tobacco production and quality worldwide. Planting resistant varieties is the most economical and effective way to control this disease. However, the lack of understanding of the mechanism of tobacco resistance to tobacco brown spot has hindered progress in the breeding of resistant varieties.

Methods and results

In this study, differentially expressed proteins (DEPs), including 12 up-regulated and 11 down-regulated proteins, were screened using isobaric tags for relative and absolute quantification (iTRAQ) by comparing resistant and susceptible pools and analyzing the associated functions and metabolic pathways. Significantly up-regulated expression of the major latex-like protein gene 423 (MLP 423) was detected in both the resistant parent and the population pool. Bioinformatics analysis showed that the NbMLP423 cloned in Nicotiana benthamiana had a similar structure to the NtMLP423 in Nicotiana tabacum, and that expression of both genes respond rapidly to Alternaria alternata infection. NbMLP423 was then used to study the subcellular localization and expression in different tissues, followed by both silencing and the construction of an overexpression system for NbMLP423. The silenced plants demonstrated inhibited TBS resistance, while the overexpressed plants exhibited significantly enhanced resistance. Exogenous applications of plant hormones, such as salicylic acid, had a significant inducing effect on NbMLP423 expression.

Conclusions

Taken together, our results provide insights into the role of NbMLP423 in plants against tobacco brown spot infection and provide a foundation for obtaining resistant tobacco varieties through the construction of new candidate genes of the MLP subfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Full length sequence of NtMLP423 and NbMLP423 was submitted in GenBank with the accession number OM672246 and OM672247, respectively. All the raw data is publicly available and included in the manuscript also. Further details can be requested at zhangyu02@caas.cn.

References

  1. LaMondia J (2001) Outbreak of brown spot of tobacco caused by Alternaria alternata in Connecticut and Massachusetts. Plant Dis 85:230–230. https://doi.org/10.1094/PDIS.2001.85.2.230B

    Article  CAS  PubMed  Google Scholar 

  2. Xie Z, Li M, Wang D, Wang F, Shen H, Sun G, Feng C, Wang X, Chen D, Sun X (2021) Biocontrol efficacy of Bacillus siamensis LZ88 against brown spot disease of tobacco caused by Alternaria alternata. Biol Control. https://doi.org/10.1016/j.biocontrol.2021.104788

    Article  Google Scholar 

  3. Wang H, Huang Y, Xia H, Wang J, Wang M, Zhang C, Lu H (2015) Phenotypic analysis of Alternaria alternata, the causal agent of tobacco brown spot. Plant Pathology J 14:79–85. https://doi.org/10.3923/ppj.2015.79.85

    Article  CAS  Google Scholar 

  4. Nessler C, Allen R, Galewsky A (1985) Identification and characterization of latex-specific proteins in opium poppy. Plant Physiol 79:499–504. https://doi.org/10.1104/pp.79.2.499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nessler C, Kurz W, Pelcher L (1990) Isolation and analysis of the major latex protein genes of opium poppy. Plant Mol Biol 15:951–953. https://doi.org/10.1007/BF00039436

    Article  CAS  PubMed  Google Scholar 

  6. Yldz M, Terzi H (2021) Exogenous cysteine alleviates chromium stress via reducing its uptake and regulating proteome in roots of Brassica napus L. seedlings. S Afr J Bot. https://doi.org/10.1016/j.sajb.2021.02.021

    Article  Google Scholar 

  7. Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286–305. https://doi.org/10.1186/1471-2148-8-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang D, Song L, Lin Z, Huang K, Liu C, Wang Y, Liu D, Zhang S, Yang J (2021) HACC-based nanoscale delivery of the NbMLP28 plasmid as a crop protection strategy for viral diseases. ACS Omega 6:33953–33960. https://doi.org/10.1021/acsomega.1c05295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pühringer H, Moll D, Hoffmann-Sommergruber K, Watillon B, Katinger H, da Câmara Machado ML (2000) The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Sci. https://doi.org/10.1016/S0168-9452(99)00222-8

    Article  Google Scholar 

  10. Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559. https://doi.org/10.1093/pcp/pch063

    Article  CAS  PubMed  Google Scholar 

  11. Lee O, Pulla R, Kim Y, Balusamy S, Yang D (2012) Expression and stress tolerance of PR10 genes from Panax ginseng C.A. meyer. Mol Biol Rep. https://doi.org/10.1007/s11033-011-0987-8

    Article  PubMed  Google Scholar 

  12. Yang C, Liang S, Wang H, Han L, Wang F, Cheng H, Wu X, Qu Z, Wu J, Xia G (2015) Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Mol Plant 8:399–411. https://doi.org/10.1016/j.molp.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  13. Song L, Wang J, Jia H, Kamran A, Qin Y, Liu Y, Hao K, Yang J (2020) Identification and functional characterization of NbMLP28, a novel MLP-like protein 28 enhancing Potato virus Y resistance in Nicotiana benthamiana. BMC Micro 20:55–68. https://doi.org/10.21203/rs.2.17980/v2

    Article  CAS  Google Scholar 

  14. Chen J, Dai X (2010) Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 231:861–873. https://doi.org/10.1007/s00425-009-1092-2

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z (2016) Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. J E Bot 67:421–434. https://doi.org/10.1093/jxb/erv477

    Article  CAS  Google Scholar 

  16. Devoto A, Turner J (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot-London 92:329–337. https://doi.org/10.1093/aob/mcg151

    Article  CAS  Google Scholar 

  17. Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. https://doi.org/10.1007/s11103-008-9435-0

    Article  CAS  PubMed  Google Scholar 

  18. Khan M, Ehar F, Per T, Anjum N, Khan N (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462–469. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun H, Kim M, Pulla R, Kim Y, Yang D (2010) Isolation and expression analysis of a novel major latex-like protein (MLP151) gene from Panax ginseng. Mol Biol Rep 37:2215–2222. https://doi.org/10.1007/s11033-009-9707-z

    Article  CAS  PubMed  Google Scholar 

  20. Zhang N, Li R, Shen W, Jiao S, Zhang J, Xu W (2018) Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Mol Genet Genomics 293:1061–1075. https://doi.org/10.1007/s00438-018-1440-7

    Article  CAS  PubMed  Google Scholar 

  21. Hubbeling N (1963) Multiplication of some phytopathogenic fungi in relation to testing the disease resistance of vegetable crops (A summary). Annual Report of the Bean Improvement Cooperative (Bean Improvement Cooperative) 6:22

    Google Scholar 

  22. Dobhal V, Monga D (1991) Genetic analysis of field resistance to brown spot caused by Alternaria alternata (FR.) Keisaler in Nicotiana rustica Linn. Tobacco Res 17:11–15

    Google Scholar 

  23. Yang M, Song D, Cao X, Wu R, Liu B (2017) Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Res Int 92:17–25. https://doi.org/10.1016/j.foodres.2016.11.041

    Article  CAS  PubMed  Google Scholar 

  24. Karp N, Huber W, Sadowski PG, Charles PD, Hester S, Lilley K (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9:1885–1897. https://doi.org/10.1074/mcp.M900628-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 15:1029–1048. https://doi.org/10.1186/1471-2164-15-1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breiteneder H, Lackner P, Radauer C (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286–305. https://doi.org/10.1186/1471-2148-8-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osmark P, Boyle B, Brisson N (1998) Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins. Plant Mol Biol 38:1243–1246. https://doi.org/10.1023/A:1006060224012

    Article  CAS  PubMed  Google Scholar 

  28. Radauer C, Breiteneder H (2007) Evolutionary biology of plant food allergens. J Allergy Clin Immunol 120:518–525. https://doi.org/10.1016/j.jaci.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  29. Gajhede M, Osmark P, Poulsen F, Ipsen H, Spangfort M (1996) X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nat Struct Biol 3:1040–1045. https://doi.org/10.1038/nsb1296-1040

    Article  CAS  PubMed  Google Scholar 

  30. Pasternak A, Spaan W, Snijder E (2006) Nidovirus transcription: how to make sense...? J Gen Virol 87:1403–1421. https://doi.org/10.1242/jeb.01067

    Article  CAS  PubMed  Google Scholar 

  31. Spangfort MD, Mirza O, Ipsen H, Van Neerven RJ, Gajhede M, Larsen JN (2003) Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis. J Immunol. https://doi.org/10.4049/jimmunol.171.6.3084

    Article  PubMed  Google Scholar 

  32. Nagato T, Kobayashi H, Yanai M, Sato K, Aoki N, Oikawa K, Kimura S, Harabuchi Y (2007) Functional analysis of birch pollen allergen Bet v 1-specific regulatory T cells. J Immunol 178:1189–1198. https://doi.org/10.4049/jimmunol.178.2.1189

    Article  CAS  PubMed  Google Scholar 

  33. Swoboda I, Weerd N, Bhalla P, Niederberger V, Sperr W, Valent P, Singh MB (2015) Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy. Eur J Immunol 32:270–280. https://doi.org/10.1002/1521-4141(200201)32:1%3c270::AID-IMMU270%3e3.0.CO;2-X

    Article  Google Scholar 

  34. Choi S, Hong M, Kim H, Ryoo N, Rhim H, Kang L (2015) Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Acta Crystallogr D 71:1039–1050. https://doi.org/10.1107/S139900471500259X

    Article  CAS  PubMed  Google Scholar 

  35. Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10(5):466–472. https://doi.org/10.1016/j.pbi.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  36. Ashraf M, Akram N, Arteca R, Foolad M (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190. https://doi.org/10.1080/07352689.2010.483580

    Article  CAS  Google Scholar 

  37. Jin J, Zhang H, Tan J, Yan M, Li D, Khan A, Gong ZH (2016) A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to Phytophthora capsici. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01217

    Article  PubMed  PubMed Central  Google Scholar 

  38. Müller M (2021) Foes or friends: ABA and ethylene interaction under abiotic stress. Plants (Basel). https://doi.org/10.3390/plants10030448

    Article  PubMed  PubMed Central  Google Scholar 

  39. Riyazuddin R, Gupta R (2021) Plausible involvement of ethylene in plant ferroptosis: prospects and leads. Front Plant Sci. https://doi.org/10.3389/fpls.2021.680709

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958. https://doi.org/10.1007/s00299-015-1756-2

    Article  CAS  PubMed  Google Scholar 

  41. Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q (2013) Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J Exp Bot 64:637–650. https://doi.org/10.1093/jxb/ers360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun H, Hu X, Ma J, Hettenhausen C, Wang L, Sun G, Wu J (2014) Requirement of ABA signalling-mediated stomatal closure for resistance of wild tobacco to Alternaria alternata. Plant Pathol 63:1070–1077. https://doi.org/10.1111/ppa.12181

    Article  CAS  Google Scholar 

  43. Chen Y, Shakeel S, Bowers J, Zhao X, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758. https://doi.org/10.1074/jbc.M704419200

    Article  CAS  PubMed  Google Scholar 

  44. Isaacson T, Damasceno C, Saravanan R, He Y, Catalá C, Saladié M, Rose J (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774. https://doi.org/10.1038/nprot.2006.102

    Article  CAS  PubMed  Google Scholar 

  45. Smith P, Krohn R, Hermanson G, Mallia A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D (1985) Measurement of protein using bicinchoninic acid -ScienceDirect. Anal Biochem 150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  46. Wisniewski J, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. https://doi.org/10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  47. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anna B, Thomas G, Denise H, Kimmo K, Annette B (2018) VIGS-empowering genetics in non-model organisms. J Exp Bot 70:3. https://doi.org/10.1093/jxb/ery411

    Article  CAS  Google Scholar 

  49. Peirson S, Butler J, Foster R (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:73e–773. https://doi.org/10.1093/nar/gng073

    Article  CAS  Google Scholar 

  50. Han T, You C, Zhang L, Feng C, Zhang C, Wang J, Kong F (2016) Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. Bio Contr 61:195–205. https://doi.org/10.1007/s10526-015-9705-0

    Article  Google Scholar 

  51. Zhang S, Ai H (2000) A general strategy to red-shift green fluorescent protein based biosensors. Nat Chem Biol 16:1434–1439. https://doi.org/10.1038/s41589-020-0641-7

    Article  CAS  Google Scholar 

  52. Kaplan F, Kopka J, Haskell D (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujita Y, Fujita A, Satoh C (2005) AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470. https://doi.org/10.1105/tpc.105.035659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to teachers and the colleagues who have contributed at any level to this research, with special thanks to Shanshan Liu and Chenyu Su for writing most of this manuscript.

Funding

This research was supported by a grant from Sichuan Science and Technology Project (SCYC201902, SCYC202001), Science and Technology Project (110202103014), Guangxi Science and Technology Project (2020450000340001-B01). The funders had no role in study design, data collection and analysis, decision to publish or in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YZ and JW performed and analyzed most of lab experiment data, YX, CJ, LC and SG performed most of statistical analyses and sequencing data analyses. CL, YW and HJ drafted the manuscript. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Chenggang Luo, Yuanying Wang or Haijiang Jia.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1194 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Xiao, Y. et al. Proteomics analysis of a tobacco variety resistant to brown spot disease and functional characterization of NbMLP423 in Nicotiana benthamiana. Mol Biol Rep 50, 4395–4409 (2023). https://doi.org/10.1007/s11033-023-08330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08330-7

Keywords

Navigation