Skip to main content

Advertisement

Log in

The expression profile of HAR1A and HAR1B in the peripheral blood cells of multiple sclerosis patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system (CNS) with varying degrees of axonal and neuronal damage. The onset and progression of the disease are influenced by several environmental and genetic variables. Long non-coding RNAs (lncRNAs) have a crucial role in the pathophysiology of MS. Our study aimed to assess the levels of HAR1A and HAR1B lncRNA expression in the blood samples of MS patients and investigate the relationship between these lncRNAs and disease activity.

Methods and results

The blood samples of 100 MS patients, including 82 relapsing-remitting (RR), 8 primary progressive (PP), and 10 secondary progressive (SP) MS cases, and 100 healthy controls were collected. Quantitative real-time PCR was used for the evaluation of gene expression. ROC curve analysis was performed to evaluate the diagnostic potential of lncRNA levels. A significant decrease was detected in HAR1A expressions (P < 0.0001), and a moderate increase was also shown in HAR1B of SPMS patients (P value = 0.0189). HAR1A showed different expression levels in patients over forty (P value = 0.034). The expression levels of HAR1A and HAR1B were positively correlated in MS patients (r = 0.2003, P value = 0.0457). In addition, ROC curve results suggested that HAR1A can be introduced as a novel biomarker for MS diagnosis (AUC = 0.776).

Conclusion

The low serum level of HAR1A may be a potential molecular biomarker for MS diagnosis; however, no discernible difference was detected in the expression level of HAR1B in the blood samples of MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available upon request.

Code availability

Not applicable.

References

  1. Sedighi S, Gholizadeh O, Yasamineh S, Akbarzadeh S, Amini P, Favakehi P, Afkhami H, Firouzi-Amandi A, Pahlevan D, Eslami M, Yousefi B, Poortahmasebi V, Dadashpour M (2022) Comprehensive Investigations relationship between viral infections and multiple sclerosis pathogenesis. Curr Microbiol 80(1):15. https://doi.org/10.1007/s00284-022-03112-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS. Multiple Scler J 26(14):1816–1821

    Article  Google Scholar 

  3. Asmarian N, Sharafi Z, Mousavi A, Jacques R, Tamayo I, Bind M-A, Abutorabi-Zarchi M, Moradian MJ, Izadi S (2021) Multiple sclerosis incidence rate in southern Iran: a bayesian epidemiological study. BMC Neurol 21(1):1–9

    Article  Google Scholar 

  4. Choi I-Y, Lee P, Adany P, Hughes AJ, Belliston S, Denney DR, Lynch SG (2018) In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Multiple Scler J 24(8):1029–1038

    Article  CAS  Google Scholar 

  5. Fenoglio C, Oldoni E, Serpente M, Milena A, Arcaro M, D’Anca M, Pietroboni AM, Calvi A, Lecchi E, Goris A (2018) LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol 324:129–135

    Article  CAS  PubMed  Google Scholar 

  6. Amatya B, Khan F, Galea M (2019) Rehabilitation for people with multiple sclerosis: an overview of Cochrane Reviews. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012732.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fortune AJ, Taylor BV, Charlesworth JC, Burdon KP, Blackburn NB, Fletcher JL, Mehta A, Young KM (2022) Generation and characterisation of four multiple sclerosis iPSC lines from a single family. Stem Cell Res 62:102828

    Article  CAS  PubMed  Google Scholar 

  8. Krysko KM, Graves JS, Dobson R, Altintas A, Amato MP, Bernard J, Bonavita S, Bove R, Cavalla P, Clerico M (2020) Sex effects across the lifespan in women with multiple sclerosis. Ther Adv Neurol Disord 13:1756286420936166

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung H-P, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA (2020) Epstein–Barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol Med 26(3):296–310

    Article  CAS  PubMed  Google Scholar 

  10. Cencioni MT (2020) The immune regulation of PD-1/PDL-1 axis, a potential biomarker in multiple sclerosis. Neuroimmunol Neuroinflamm 7(3):277–290

    CAS  Google Scholar 

  11. Chan VS-F (2020) Epigenetics in multiple sclerosis. In: Epigenetics in allergy and autoimmunity, pp 309–374

  12. Zhang F, Gao C, Ma XF, Peng XL, Zhang RX, Kong DX, Simard AR, Hao JW (2016) Expression Profile of Long Noncoding RNA s in Peripheral Blood mononuclear cells from multiple sclerosis patients. CNS Neurosci Ther 22(4):298–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santoro M, Nociti V, Lucchini M, De Fino C, Losavio FA, Mirabella M (2016) Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J Mol Neurosci 59(1):18–23

    Article  CAS  PubMed  Google Scholar 

  14. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118

    Article  CAS  PubMed  Google Scholar 

  15. Ozdilek B, Kaya IA, Demircan B, Tombul T, Ankarali H (2021) The relationship between serum levels of lncRNA H19, GAS5, HAR1B, LINC01783 and clinical signs of Parkinson’s disease

  16. Miao C, Bai L, Yang Y, Huang J (2021) Dysregulation of lncRNAs in rheumatoid arthritis: biomarkers, pathogenesis and potential therapeutic targets. Front Pharmacol 12:652751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Y, Li S, Zhang Z, Yu X, Zheng J (2018) The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Front Med 5:193

    Article  Google Scholar 

  18. Doxtater K, Tripathi MK, Khan MM (2020) Recent advances on the role of long non-coding RNAs in Alzheimer’s disease. Neural Regen Res 15(12):2253

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eftekharian MM, Ghafouri-Fard S, Soudyab M, Omrani MD, Rahimi M, Sayad A, Komaki A, Mazdeh M, Taheri M (2017) Expression analysis of long non-coding RNAs in the blood of multiple sclerosis patients. J Mol Neurosci 63(3):333–341

    Article  CAS  PubMed  Google Scholar 

  20. Amiri M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, Borhani-Haghighi A (2022) Expression and diagnostic values of MIAT, H19, and NRON long non-coding RNAs in multiple sclerosis patients. Egypt J Med Hum Genet 23(1):1–9

    Article  Google Scholar 

  21. Shaker OG, Mahmoud RH, Abdelaleem OO, Ibrahem EG, Mohamed AA, Zaki OM, Abdelghaffar NK, Ahmed TI, Hemeda NF, Ahmed NA (2019) LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci Rep 39 (1)

  22. Nociti V, Santoro M (2021) What do we know about the role of lncRNAs in multiple sclerosis? Neural Regen Res 16(9):1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dastmalchi R, Ghafouri-Fard S, Omrani MD, Mazdeh M, Sayad A, Taheri M (2018) Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult Scler Relat Disord 25:219–226

    Article  PubMed  Google Scholar 

  24. Mourtada-Maarabouni M, Hasan AM, Farzaneh F, Williams GT (2010) Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol 78(1):19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ziegeler M, Cevec M, Richter C, Schwalbe H (2012) NMR studies of HAR1 RNA secondary structures reveal conformational dynamics in the human RNA. ChemBioChem 13(14):2100–2112

    Article  CAS  PubMed  Google Scholar 

  26. Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A (2006) An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443(7108):167–172

    Article  CAS  PubMed  Google Scholar 

  27. Waters E, Pucci P, Hirst M, Chapman S, Wang Y, Crea F, Heath CJ (2021) HAR1: an insight into lncRNA genetic evolution. Epigenomics 13(22):1831–1843

    Article  CAS  PubMed  Google Scholar 

  28. Salviano-Silva A, Lobo-Alves SC, Almeida RCd, Malheiros D, Petzl-Erler ML (2018) Besides pathology: long non-coding RNA in cell and tissue homeostasis. Non-coding RNA 4(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Talebian S, Gharesouran J, Ghafouri-Fard S, Esfahani BS, Arsang-Jang S, Omrani MD, Taheri M, Rezazadeh M (2019) Assessment of expression of RELN signaling pathway in multiple sclerosis patients. Immunobiology 224(3):402–407

    Article  CAS  PubMed  Google Scholar 

  30. Wang K, Song F, Fernandez-Escobar A, Luo G, Wang J-H, Sun Y (2018) The properties of cytokines in multiple sclerosis: pros and cons. Am J Med Sci 356(6):552–560

    Article  PubMed  Google Scholar 

  31. Lee C-P, Ko AM-S, Nithiyanantham S, Lai C-H, Ko Y-C (2021) Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis. J Mol Med 99(9):1323–1334

    Article  CAS  PubMed  Google Scholar 

  32. Jafari A, Babajani A, Rezaei-Tavirani M (2021) Multiple sclerosis biomarker discoveries by proteomics and metabolomics approaches. Biomark Insights 16:11772719211013352

    Article  PubMed  PubMed Central  Google Scholar 

  33. Johnson R, Richter N, Jauch R, Gaughwin PM, Zuccato C, Cattaneo E, Stanton LW (2010) Human accelerated region 1 noncoding RNA is repressed by REST in Huntington’s disease. Physiol Genom 41(3):269–274

    Article  CAS  Google Scholar 

  34. Nopoulos PC (2022) Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 19:91

    Google Scholar 

  35. Sunwoo J-S, Lee S-T, Im W, Lee M, Byun J-I, Jung K-H, Park K-I, Jung K-Y, Lee SK, Chu K (2017) Altered expression of the long noncoding RNA NEAT1 in Huntington’s disease. Mol Neurobiol 54(2):1577–1586

    Article  CAS  PubMed  Google Scholar 

  36. Tolosa A, Sanjuan J, Leal C, Costas J, Molto M, De Frutos R (2008) Rapid evolving RNA gene HAR1A and schizophrenia. Schizophr Res 99(1–3):370–372

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Yan G-Y (2013) Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics 29(20):2617–2624

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Yan CC, Zhang X, You Z-H (2017) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18(4):558–576

    CAS  PubMed  Google Scholar 

  39. Costaa MBW, zu Siederdissenc CH, Tulpand D, Stadlerc P, Nowicka K. Uncovering the structural evolution of the human accelerated region

  40. Armstrong NC, Anderson RC, McDermott KW (2019) Reelin: diverse roles in central nervous system development, health and disease. Int J Biochem Cell Biol 112:72–75

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Guo Y, Chen H, Ma F (2020) Long non-coding RNA expression profiling identifies a four-long non-coding RNA prognostic signature for isocitrate dehydrogenase mutant glioma. Front Neurol 11:573264

    Article  PubMed  PubMed Central  Google Scholar 

  42. Verdelli C, Morotti A, Tavanti GS, Silipigni R, Guerneri S, Ferrero S, Vicentini L, Vaira V, Corbetta S (2021) The core stem genes SOX2, POU5F1/OCT4, and NANOG are expressed in human parathyroid tumors and modulated by MEN1, YAP1, and β-catenin pathways activation. Biomedicines 9(6):637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dolati S, Ahmadi M, Aghebti-Maleki L, Nikmaram A, Marofi F, Rikhtegar R, Ayromlou H, Yousefi M (2018) Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators. Pharmacol Rep 70(6):1158–1167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Animal Biology, University of Tabriz, for supporting this project.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SA: Conceptualization, Visualization, Writing—original draft, Writing—review and editing, investigation. ST-G: Conceptualization, Visualization, investigation. PN: investigation. AR: Conceptualization, review and editing, Formal analysis. TG: Writing—review and editing. MAHF: Review and editing, Supervision. RS: Visualization, Supervision

Corresponding author

Correspondence to Reza Safaralizadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The Medical Ethics Committee of Tabriz Medical University approved the study (Approval Number: ID No.IR.TABRIZU.REC.1401.034).

Consent to participate

Written informed consent was obtained from all patients.

Consent for publication

All authors have given their consent for publication in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, S., Tayefeh-Gholami, S., Najari, P. et al. The expression profile of HAR1A and HAR1B in the peripheral blood cells of multiple sclerosis patients. Mol Biol Rep 50, 2391–2398 (2023). https://doi.org/10.1007/s11033-022-08182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08182-7

Keywords

Navigation