Skip to main content

Advertisement

Log in

Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Studies suggested that long noncoding HAR1A RNA may be a tumor suppressor, but its association with oral cancer remains unclear. Here, we show the functional role and mechanisms of HAR1A in oral cancer progression. Microarray analysis was performed to screen the related candidates of long noncoding RNA (lncRNA) in human monocytes. Following lncRNA HAR1A, the regulation of HAR1A, ALPK1, myosin IIA, and BRD7 was tested using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in oral cancer cells. The inflammatory and epithelial-to-mesenchymal transition marker expressions were analyzed using enzyme-linked immunosorbent assay and western blot. Phenotypic experiments were verified by colony formation assay, transwell migration assay, and Annexin V-apoptotic assay. In the nuclei of cancer cells, HAR1A functions upstream of signaling pathways and knockdown of HAR1A promoted ALPK1 expression and downregulated BRD7 resulting in inflammation and oral cancer progression. In monocytes, the expressions of TNF-α and CCL2 were increased following HAR1A knockdown and reduced following ALPK1 knockdown. HAR1A knockdown upregulated the expression of ALPK1, slug, vimentin, fibronectin, and N-cadherin but reduced the expression of E-cadherin in oral cancer cells. Myosin IIA was primarily located in the cytoplasm and that its decrease in the nuclei of oral cancer cells was likely to demonstrate suppressive ability in late-stage cancer. Our findings suggest that the HAR1A, BRD7, and myosin IIA are tumor suppressors while ALPK1 has oncogene-like property in the nucleus and is involved in inflammation and oral cancer progression. More research for HAR1A activators or ALPK1 inhibitors is required to develop potential therapeutic agents for advanced oral cancer.

Key messages

  • lncRNA HAR1A, BRD7, and myosin IIA are tumor suppressors whereas ALPK1 has an oncogenic-like property in the nucleus.

  • lncRNA HAR1A/ALPK1/BRD7/myosin IIA axis plays a critical role in the progression of oral cancer.

  • lncRNA HAR1A localizes upstream of signaling pathways to inhibit ALPK1 expression and then upregulated BRD7.

  • lncRNA HAR1A and ALPK1 are involved in cancer progression via epithelial-to-mesenchymal transition regulations.

  • ALPK1 inhibitors are potential kinase-targeted therapeutic agents for patients with advanced oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Materials).

References

  1. Howlader N, Noone AM, Krapcho M (2019) SEER cancer statistics review 1975-2016. National Cancer Institute, National Institutes of Health-USA

    Google Scholar 

  2. Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y, Xu T (2019) Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer 18:102

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shi Z, Luo Y, Zhu M, Zhou Y, Zheng B, Wu D, Wang S, Xie X, Lin H, Yu X (2019) Expression analysis of long non-coding RNA HAR1A and HAR1B in HBV-induced hepatocullular carcinoma in Chinese patients. Lab Med 50:150–157

    Article  PubMed  Google Scholar 

  4. Zou H, Wu LX, Yang Y, Li S, Mei Y, Liu YB, Zhang L, Cheng Y, Zhou HH (2017) LncRNAs PVT1 and HAR1A are prognosis biomarkers and indicate therapy outcome for diffuse glioma patients. Oncotarget 8:78767–78780

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee CP, Huang YN, Nithiyanantham S, Huang CM, Ko YC (2019) LncRNA-Jak3: Jak3 coexpressed pattern regulates monosodium urate crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression. Environ Toxicol 34:179–187

    Article  PubMed  CAS  Google Scholar 

  6. Bauer M, Nascakova Z, Mihai AI, Cheng PF, Levesque MP, Lampart S, Hurwitz R, Pfannkuch L, Dobrovolna J, Jacobs M et al (2020) The ALPK1/TIFA/NF-kappaB axis links a bacterial carcinogen to R-loop-induced replication stress. Nat Commun 11:5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee CP, Chiang SL, Ko AM, Liu YF, Ma C, Lu CY, Huang CM, Chang JG, Kuo TM, Chen CL et al (2016) ALPK1 phosphorylates myosin IIA modulating TNF-alpha trafficking in gout flares. Sci Rep 6:25740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuo TM, Yeh KT, Hsu HT, Chiang SL, Chang JG, Huang CM, Tu HP, Liu CS, Ko YC (2015) ALPK1 affects testosterone mediated regulation of proinflammatory cytokines production. J Steroid Biochem Mol Biol 154:150–158

    Article  CAS  PubMed  Google Scholar 

  9. Wang SJ, Tu HP, Ko AM, Chiang SL, Chiou SJ, Lee SS, Tsai YS, Lee CP, Ko YC (2011) Lymphocyte alpha-kinase is a gout-susceptible gene involved in monosodium urate monohydrate-induced inflammatory responses. J Mol Med (Berl) 89:1241–1251

    Article  CAS  Google Scholar 

  10. Rashid M, van der Horst M, Mentzel T, Butera F, Ferreira I, Pance A, Rutten A, Luzar B, Marusic Z, de Saint AN et al (2019) ALPK1 hotspot mutation as a driver of human spiradenoma and spiradenocarcinoma. Nat Commun 10:2213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liao HF, Lee HH, Chang YS, Lin CL, Liu TY, Chen YC, Yen JC, Lee YT, Lin CY, Wu SH et al (2016) Down-regulated and commonly mutated ALPK1 in lung and colorectal cancers. Sci Rep 6:27350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen PK, Hua CH, Hsu HT, Kuo TM, Chung CM, Lee CP, Tsai MH, Yeh KT, Ko YC (2019) ALPK1 expression is associated with lymph node metastasis and tumor growth in oral squamous cell carcinoma patients. Am J Pathol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  13. Ryazanov AG, Pavur KS, Dorovkov MV (1999) Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol 9:R43–R45

    Article  CAS  PubMed  Google Scholar 

  14. Heine M, Cramm-Behrens CI, Ansari A, Chu HP, Ryazanov AG, Naim HY, Jacob R (2005) Alpha-kinase 1, a new component in apical protein transport. J Biol Chem 280:25637–25643

    Article  CAS  PubMed  Google Scholar 

  15. Lee CP, Nithiyanantham S, Hsu HT, Yeh KT, Kuo TM, Ko YC (2019) ALPK1 regulates streptozotocin-induced nephropathy through CCL2 and CCL5 expressions. J Cell Mol Med 23:7699–7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou P, She Y, Dong N, Li P, He H, Borio A, Wu Q, Lu S, Ding X, Cao Y et al (2018) Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561:122–126

    Article  CAS  PubMed  Google Scholar 

  17. Ko AM, Tu HP, Liu TT, Chang JG, Yuo CY, Chiang SL, Chang SJ, Liu YF, Ko AM, Lee CH et al (2013) ALPK1 genetic regulation and risk in relation to gout. Int J Epidemiol 42:466–474

    Article  PubMed  PubMed Central  Google Scholar 

  18. Strietz J, Stepputtis SS, Preca BT, Vannier C, Kim MM, Castro DJ, Au Q, Boerries M, Busch H, Aza-Blanc P et al (2016) ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget 7:83278–83293

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ryzhakov G, West NR, Franchini F, Clare S, Ilott NE, Sansom SN, Bullers SJ, Pearson C, Costain A, Vaughan-Jackson A et al (2018) Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat Commun 9:3797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Betapudi V, Licate LS, Egelhoff TT (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66:4725–4733

    Article  CAS  PubMed  Google Scholar 

  22. Xia ZK, Yuan YC, Yin N, Yin BL, Tan ZP, Hu YR (2012) Nonmuscle myosin IIA is associated with poor prognosis of esophageal squamous cancer. Dis Esophagus 25:427–436

    Article  PubMed  Google Scholar 

  23. Xiong D, Ye YL, Chen MK, Qin ZK, Li MZ, Zhang H, Xu LH, Xu ZZ, Zeng MS (2012) Non-muscle myosin II is an independent predictor of overall survival for cystectomy candidates with early-stage bladder cancer. Oncol Rep 28:1625–1632

    Article  PubMed  Google Scholar 

  24. Liu D, Zhang L, Shen Z, Tan F, Hu Y, Yu J, Li G (2012) Clinicopathological significance of NMIIA overexpression in human gastric cancer. Int J Mol Sci 13:15291–15304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schramek D, Sendoel A, Segal JP, Beronja S, Heller E, Oristian D, Reva B, Fuchs E (2014) Direct in vivo RNAi screen unveils myosin IIA as a tumor suppressor of squamous cell carcinomas. Science 343:309–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conti MA, Saleh AD, Brinster LR, Cheng H, Chen Z, Cornelius S, Liu C, Ma X, Van Waes C, Adelstein RS (2015) Conditional deletion of nonmuscle myosin II-A in mouse tongue epithelium results in squamous cell carcinoma. Sci Rep 5:14068

    Article  PubMed  CAS  Google Scholar 

  27. Kas SM, de Ruiter JR, Schipper K, Annunziato S, Schut E, Klarenbeek S, Drenth AP, van der Burg E, Klijn C, Ten Hoeve JJ et al (2017) Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma. Nat Genet 49:1219–1230

    Article  CAS  PubMed  Google Scholar 

  28. Wang B, Qi X, Liu J, Zhou R, Lin C, Shangguan J, Zhang Z, Zhao L, Li G (2019) MYH9 promotes growth and metastasis via activation of MAPK/AKT signaling in colorectal cancer. J Cancer 10:874–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu X, Li Z, Shen J (2016) BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res 8:742–748

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee CP, Ko AM, Chiang SL, Lu CY, Tsai EM, Ko YC (2018) Regulatory elements in vectors containing the ctEF-1α first intron and double enhancers for an efficient recombinant protein expression system. Sci Rep 8:15396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chen Y, Guo Y, Chen H, Ma F (2020) Long non-coding RNA expression profiling identifies a four-long non-coding RNA Prognostic signature for isocitrate dehydrogenase mutant glioma. Front Neurol 11:573264

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tu HP, Min-Shan Ko A, Lee SS, Lee CP, Kuo TM, Huang CM, Ko YC (2018) Variants of ALPK1 with ABCG2, SLC2A9, and SLC22A12 increased the positive predictive value for gout. J Hum Genet 63:63–70

    Article  CAS  PubMed  Google Scholar 

  33. Yamada Y, Nishida T, Ichihara S, Kato K, Fujimaki T, Oguri M, Horibe H, Yoshida T, Watanabe S, Satoh K et al (2013) Identification of chromosome 3q28 and ALPK1 as susceptibility loci for chronic kidney disease in Japanese individuals by a genome-wide association study. J Med Genet 50:410–418

    Article  CAS  PubMed  Google Scholar 

  34. Yamada Y, Matsui K, Takeuchi I, Oguri M, Fujimaki T (2015) Association of genetic variants of the alpha-kinase 1 gene with type 2 diabetes mellitus in a longitudinal population-based genetic epidemiological study. Biomed Rep 3:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuo TM, Huang CM, Tu HP, Min-Shan Ko A, Wang SJ, Lee CP, Ko YC (2017) URAT1 inhibition by ALPK1 is associated with uric acid homeostasis. Rheumatology (Oxford) 56:654–659

    CAS  Google Scholar 

  36. Kuo TM, Hsu HT, Chung CM, Yeh KT, Wu CT, Lee CP, Chiang SL, Huang CM, Ko YC (2016) Enhanced alpha-kinase 1 accelerates multiple early nephropathies in streptozotocin-induced hyperglycemic mice. Biochim Biophys Acta 1862:2034–2042

    Article  CAS  PubMed  Google Scholar 

  37. Tang D, Tao D, Fang Y, Deng C, Xu Q, Zhou J (2017) TNF-alpha promotes invasion and metastasis via NF-kappa B pathway in oral squamous cell carcinoma. Med Sci Monit Basic Res 23:141–149

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chuang JY, Huang YL, Yen WL, Chiang IP, Tsai MH, Tang CH (2014) Syk/JNK/AP-1 signaling pathway mediates interleukin-6-promoted cell migration in oral squamous cell carcinoma. Int J Mol Sci 15:545–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chuang JY, Yang WH, Chen HT, Huang CY, Tan TW, Lin YT, Hsu CJ, Fong YC, Tang CH (2009) CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol 220:418–426

    Article  CAS  PubMed  Google Scholar 

  40. Ko AM, Lee CH, Ko YC (2020) Betel quid-associated cancer: prevention strategies and targeted treatment. Cancer Lett 477:60–69

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Liu S, Zhang Y, Yang J (2019) Myosin heavy chain 9: oncogene or tumor suppressor gene? Med Sci Monit 25:888–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan JYK, Zhen G, Agrawal N (2019) The role of tumor DNA as a diagnostic tool for head and neck squamous cell carcinoma. Semin Cancer Biol 55:1–7

    Article  CAS  PubMed  Google Scholar 

  43. Zhao R, Liu Y, Wang H, Yang J, Niu W, Fan S, Xiong W, Ma J, Li X, Phillips JB et al (2017) BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-small ka, CyrillicB signaling pathway. Cell Mol Immunol 14:830–841

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Tao D, Xu Q, Gao Z, Tang D (2015) Expression of E-cadherin and vimentin in oral squamous cell carcinoma. Int J Clin Exp Pathol 8:3150–3154

    PubMed  PubMed Central  Google Scholar 

  45. Nguyen PT, Kudo Y, Yoshida M, Kamata N, Ogawa I, Takata T (2011) N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Histol Histopathol 26:147–156

    CAS  PubMed  Google Scholar 

  46. Chiang SL, Velmurugan BK, Chung CM, Lin SH, Wang ZH, Hua CH, Tsai MH, Kuo TM, Yeh KT, Chang PY et al (2017) Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep 7:6235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Radwanska A, Beghelli-de la Forest Divonne S, et al. (2017) Fibronectin-guided migration of carcinoma collectives. Nat Commun 8:14105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology (grant number MOST 106-2314-B-039-017-MY3) and the China Medical University & Hospital (grant number DMR-108-042, DMR-109-156).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: YC Ko. Acquisition, analysis, or interpretation of data: CP Lee, AMS Ko, S Nithiyanantham, CH Lai, and YC Ko. Drafting the manuscript: CP Lee, AMS Ko, and YC Ko. All authors approved the final manuscript for submission and final approval of the version to be published. We thank Dr. Po-Ku Chen for his technical assistance.

Corresponding author

Correspondence to Ying-Chin Ko.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CP., Ko, A.MS., Nithiyanantham, S. et al. Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis. J Mol Med 99, 1323–1334 (2021). https://doi.org/10.1007/s00109-021-02095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02095-x

Keywords

Navigation