Skip to main content
Log in

Progesterone regulates the endoplasmic reticulum-associated degradation and Unfolded Protein Response axis by mimicking the androgenic stimulation in prostate cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Today, androgen receptor (AR)-mediated signaling mechanisms in prostate cancer are intensively studied. However, the roles of other steroid hormones in prostate cancer and their effects on androgenic signaling still remain a mystery. Recent studies focused on the androgen-mediated regulation of protein quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer cells. Present study, we investigated the action of progesterone signaling on ERAD and UPR mechanisms and analyzed the crosstalk of progesterone signaling with androgenic signal in prostate cancer cells.

Methods and results

The mode of action of progesterone on ERAD, UPR and AR signaling in prostate cancer was investigated by cell culture studies using LNCaP and 22Rv1 cells. To this aim qRT-PCR, western-blotting assay, immunofluorescent microscopy, nuclear fractionation and bioinformatic analysis were used. Our results indicated that progesterone positively regulates mRNA and protein levels of ERAD components in LNCaP cells. Also, it induced the IRE⍺ and PERK branches of UPR signaling. Progesterone receptor antagonist effectively antagonized the progesterone-induced responses. We also had similar results in 22Rv1 cells. Also, we tested the effect of the pharmacologically reducing of IRE⍺ and PERK signaling on progesterone-induced ERAD. Additionally, we determined the presence of putative progesterone response elements (PREs) in the promoter regions of ERAD members by bioinformatic tool. More strikingly, we found progesterone regulates AR signaling by modulating the nuclear transactivation of AR.

Conclusion

Herein, we defined that progesterone hormone positively regulates ERAD and UPR mechanisms in prostate cancer cells and that progesterone contributes to the molecular biology of prostate cancer by regulating androgenic signaling.

Graphical abstract

Mode of Action of Progesteron on Androgen sensitive prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated in this study are available upon request from the corresponding author.

References

  1. Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21. https://doi.org/10.1093/toxsci/kfl051

    Article  CAS  Google Scholar 

  2. Migliaccio A, Castoria G, Auricchio F (2007) Src-dependent signalling pathway regulation by sex-steroid hormones: therapeutic implications. Int J Biochem Cell Biol 39:1343–1348. https://doi.org/10.1016/j.biocel.2006.12.009

    Article  CAS  Google Scholar 

  3. Valko-Rokytovská M, Očenáš P, Salayová A, Kostecká Z (2021) Breast cancer: targeting of steroid hormones in cancerogenesis and diagnostics. Int J Mol Sci 22:5878. https://doi.org/10.3390/ijms22115878

    Article  CAS  Google Scholar 

  4. Capper CP, Rae JM, Auchus RJ (2016) The metabolism, analysis, and targeting of steroid hormones in breast and prostate cancer. Horm Cancer 7:149–164. https://doi.org/10.1007/s12672-016-0259-0

    Article  CAS  Google Scholar 

  5. Chandrasekar T, Yang JC, Gao AC, Evans CP (2015) Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 4:365–380. https://doi.org/10.3978/j.issn.2223-4683.2015.05.02

    Article  Google Scholar 

  6. Erzurumlu Y, Ballar P (2017) Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Sci Rep 7:40719. https://doi.org/10.1038/srep40719

    Article  CAS  Google Scholar 

  7. Storm M, Sheng X, Arnoldussen YJ, Saatcioglu F (2016) Prostate cancer and the unfolded protein response. Oncotarget 7:54051–54066. https://doi.org/10.18632/oncotarget.9912

    Article  Google Scholar 

  8. Lydon JP, DeMayo FJ, Funk CR et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278. https://doi.org/10.1101/gad.9.18.2266

    Article  CAS  Google Scholar 

  9. Niswender GD (2002) Molecular control of luteal secretion of progesterone. Reproduction 123:333–339. https://doi.org/10.1530/rep.0.1230333

    Article  CAS  Google Scholar 

  10. Stefanick ML (2005) Estrogens and progestins: background and history, trends in use, and guidelines and regimens approved by the US food and drug administration. Am J Med 118(Suppl 12B):64–73. https://doi.org/10.1016/j.amjmed.2005.10.014

    Article  CAS  Google Scholar 

  11. Guerra-Araiza C, Gómora-Arrati P, García-Juárez M et al (2009) Role of progesterone receptor isoforms in female sexual behavior induced by progestins in rats. Neuroendocrinology 90:73–81. https://doi.org/10.1159/000224406

    Article  CAS  Google Scholar 

  12. Brinton RD, Thompson RF, Foy MR et al (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:313–339. https://doi.org/10.1016/j.yfrne.2008.02.001

    Article  CAS  Google Scholar 

  13. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141. https://doi.org/10.1101/gad.14.2.121

    Article  CAS  Google Scholar 

  14. Leonhardt SA, Edwards DP (2002) Mechanism of action of progesterone antagonists. Exp Biol Med 227:969–980. https://doi.org/10.1177/153537020222701104

    Article  CAS  Google Scholar 

  15. Diep CH, Daniel AR, Mauro LJ et al (2015) Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol 54:31–53. https://doi.org/10.1530/JME-14-0252

    Article  CAS  Google Scholar 

  16. Kim JJ, Chapman-Davis E (2010) Role of progesterone in endometrial cancer. Semin Reprod Med 28:81–90. https://doi.org/10.1055/s-0029-1242998

    Article  CAS  Google Scholar 

  17. Brolin J, Skoog L, Ekman P (1992) Immunohistochemistry and biochemistry in detection of androgen, progesterone, and estrogen receptors in benign and malignant human prostatic tissue. Prostate 20:281–295. https://doi.org/10.1002/pros.2990200404

    Article  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  19. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  Google Scholar 

  20. Nabbi A, Riabowol K (2015) Rapid isolation of nuclei from cells in vitro. Cold Spring Harb Protoc 2015:db.prot083733. https://doi.org/10.1101/pdb.prot083733

    Article  Google Scholar 

  21. Naoki T, Ikuya S, Osamu T, Keishi M (1988) RU486, a progestin antagonist, binds to progesterone receptors in a human endometrial cancer cell line and reverses the growth inhibition by progestins. J Steroid Biochem 31:161–166. https://doi.org/10.1016/0022-4731(88)90049-0

    Article  Google Scholar 

  22. Hwang J, Qi L (2018) Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci 43:593–605. https://doi.org/10.1016/j.tibs.2018.06.005

    Article  CAS  Google Scholar 

  23. Liu L, Xu L, Zhang S et al (2018) STF-083010, an inhibitor of XBP1 splicing, attenuates acute renal failure in rats by suppressing endoplasmic reticulum stress-induced apoptosis and inflammation. Exp Anim 67:373–382. https://doi.org/10.1538/expanim.17-0131

    Article  CAS  Google Scholar 

  24. Axten JM, Romeril SP, Shu A et al (2013) Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med Chem Lett 4:964–968. https://doi.org/10.1021/ml400228e

    Article  CAS  Google Scholar 

  25. Sheng X, Arnoldussen YJ, Storm M et al (2015) Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med 7:788–801. https://doi.org/10.15252/emmm.201404509

    Article  CAS  Google Scholar 

  26. Kumar VL, Majumder PK (1995) Prostate gland: structure, functions and regulation. Int Urol Nephrol 27:231–243. https://doi.org/10.1007/BF02564756

    Article  CAS  Google Scholar 

  27. Tindall D, Lonergan P (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20. https://doi.org/10.4103/1477-3163.83937

    Article  CAS  Google Scholar 

  28. Jin Y, Saatcioglu F (2020) Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer 6(2):160–171. https://doi.org/10.1016/j.trecan.2019.12.001

    Article  CAS  Google Scholar 

  29. Valle S, Sharifi N (2021) Targeting glucocorticoid metabolism in prostate cancer. Endocrinology 162(9):bqab132. https://doi.org/10.1210/endocr/bqab132

    Article  CAS  Google Scholar 

  30. Arora VK, Schenkein E, Murali R et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155(6):1309–1322. https://doi.org/10.1016/j.cell.2013.11.012

    Article  CAS  Google Scholar 

  31. Isikbay M, Otto K, Kregel S et al (2014) Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 5(2):72–89. https://doi.org/10.1007/s12672-014-0173-2

    Article  CAS  Google Scholar 

  32. Asher GW, Peterson AJ, Duganzich D (1989) Adrenal and ovarian sources of progesterone secretion in young female fallow deer, dama dama. J Reprod Fertil 85:667–675. https://doi.org/10.1530/jrf.0.0850667

    Article  CAS  Google Scholar 

  33. Baker ME (2011) Origin and diversification of steroids: co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334:14–20. https://doi.org/10.1016/j.mce.2010.07.013

    Article  CAS  Google Scholar 

  34. Gronemeyer H, Meyer ME, Bocquel MT et al (1991) Progestin receptors: isoforms and antihormone action. J Steroid Biochem Mol Biol 40:271–278. https://doi.org/10.1016/0960-0760(91)90192-8

    Article  CAS  Google Scholar 

  35. Ilhan R, Üner G, Yilmaz S et al (2022) Novel regulation mechanism of adrenal cortisol and DHEA biosynthesis via the endogen ERAD inhibitor small VCP-interacting protein. Sci Rep 12:869. https://doi.org/10.1038/s41598-022-04821-y

    Article  CAS  Google Scholar 

  36. Guzeloglu Kayisli O, Kayisli UA, Basar M et al (2015) Progestins upregulate FKBP51 expression in human endometrial stromal cells to induce functional progesterone and glucocorticoid withdrawal: implications for contraceptive- associated abnormal uterine bleeding. PLoS ONE 10:e0137855. https://doi.org/10.1371/journal.pone.0137855

    Article  CAS  Google Scholar 

  37. Adams CJ, Kopp MC, Larburu N et al (2019) Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci 6:11. https://doi.org/10.3389/fmolb.2019.00011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fahri Saatcioglu (Department of Biosciences, University of Oslo, Norway) for the Human prostate adenocarcinoma cell lines, LNCaP and Du145 and synthetic androgen R1881. We thank Suleyman Demirel University-Innovative Technologies Application and Research Center. Fluorescence microscopic examination was performed at Mehmet Akif Ersoy University, Veterinary Faculty, Department of Pathology, we thank Dr. Ozlem OZMEN.

Funding

This work received support from Süleyman Demirel Üniversitesi, (Grant Numbers TSG-2021-8302, TAB-2020-8253).

Author information

Authors and Affiliations

Authors

Contributions

YE initiated and directed the project, designed, and conducted the experiments, analyzed, and interpreted the results, and wrote the manuscript. HKD and DC assisted experimental studies. All correspondence and requests for materials should be addressed to YE. All authors have read and approved the final version of the article.

Corresponding author

Correspondence to Yalcin Erzurumlu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This study does not require any ethical permission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erzurumlu, Y., Dogan, H.K. & Catakli, D. Progesterone regulates the endoplasmic reticulum-associated degradation and Unfolded Protein Response axis by mimicking the androgenic stimulation in prostate cancer cells. Mol Biol Rep 50, 1253–1265 (2023). https://doi.org/10.1007/s11033-022-08065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08065-x

Keywords

Navigation