Skip to main content
Log in

Effect of the plant probiotic bacteria on terpenoid indole alkaloid biosynthesis pathway gene expression profiling, vinblastine and vincristine content in the root of Catharanthus roseus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Catharanthus roseus is the sole resource of vinblastine and vincristine, two TIAs of great interest for their powerful anticancer activities. Increasing the concentration of these alkaloids in various organs of the plant is one of the important goals in C. roseus breeding programs. Plant probiotic bacteria (PBB) act as biotic elicitors and can induce the synthesis of secondary products in plants. The purpose of this research is to study the effects of PBB on expression of the TIA biosynthetic pathway genes and the content of alkaloids in C. roseus.

Methods and results

The individual and combined effects of P. fluorescens strains 169 and A. brasilense strains Ab-101 was studied for expression of the TIA biosynthetic pathway genes (G10H, DAT, T16H and CrPRX) using qRT-PCR and the content of vinblastine and vincristine using HPLC method in roots of C. roseus. P. fluorescens. This drastically increased the content of vinblastine and vincristine alkaloids, compared to the control in the roots, to 174 and 589 (µg/g), respectively. Molecular analysis showed bacterium significantly increased the expression of more genes in the TIA biosynthetic pathway compared to the control. P. fluorescens increased the expression of the final gene of the biosynthetic pathway (CrPRX) 47.9 times compared to the control. Our findings indicate the correlation between transcriptional and metabolic outcomes. The same was true for A. brasilense.

Conclusions

It can be concluded that seed treatments and seedling root treatments composed of naturally occurring probiotic bacteria are likely to be widely applicable for inducing enhanced alkaloid contents in medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFU:

colony forming units

CrPRX:

Catharanthus roseus peroxidase

DAT:

Deacetylvindoline-4-O-acetyltransferase

D4H:

Desacetoxyvindoline-4-hydroxylase

G10H:

Geraniol-10-hydroxylase

HPLC:

High-performance liquid chromatography

PBB:

Plant probiotic bacteria

PGPR:

Plant growth promoting rhizobacteria

qRT-PCR:

Quantitative reverse transcription PCR

RSP9:

40 s ribosomal protein S9

TIAs:

Terpenoid indole alkaloids

References

  1. Ahmadzadeh M, Sharifi Tehrani A (2021) Plant probiotic bacteria. University of Tehran Press. 630 Pages. (In Persian)

  2. Almagro L, Fernández-Pérez F, Pedreño MA (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20:2973–3000

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arvin P, Vafabakhsh J, Mazaheri D, Noormohamadi G, Azizi M (2012) Study of drought stress and plant growth promoting rhizobacteria (PGPR) on yield, yield components and seed oil content of different cultivars and species of Brassica oilseed rape. Annals of Biological Research 3(9):4444–4451

    Google Scholar 

  4. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biology 35(4):1044–1051

    Article  CAS  Google Scholar 

  5. Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta 220(3):376–383

    Article  CAS  PubMed  Google Scholar 

  6. Favali MA, Musetti R, Benvenuti S, Bianch A, Pressacco L (2004) Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations”. Protoplasma 223(1):45–51

    Article  CAS  PubMed  Google Scholar 

  7. Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish J Biology 37:350–360

    CAS  Google Scholar 

  8. Goklany Sh, Loring RH, Glick J, Lee-Parsons CWT (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures tthrough gene expression profiling and precursor feeding”. Biotechnol Prog 25(5):1289–1296

    Article  Google Scholar 

  9. Gupta S, Pandey-Rai S, Srivastava S, Naithani SC, Prasad M, Kumar S (2007) Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J Genet 86(3):259–268

    Article  CAS  PubMed  Google Scholar 

  10. Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90(3):1005–1016

    Article  CAS  PubMed  Google Scholar 

  11. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B 60(1):7–11

    Article  CAS  Google Scholar 

  12. Khataee E, Karimi F, Razavi K (2019) Alkaloids production and antioxidant properties in Catharanthus roseus (L.) G. Don. Shoots and study of alkaloid biosynthesis-related gene expression levels in response to methyl jasmonate and putrescine treatments as ecofriendly elicitors. Biol Futura 70(1):38–46

    Article  CAS  Google Scholar 

  13. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13(1):1–17

    Article  CAS  Google Scholar 

  14. Liu J, Cai J, Wang R, Yang S (2017) Transcriptional regulation and transport of terpenoid indole alkaloid in Catharanthus roseus: exploration of new research directions. Int J Mol Sci 18:53

    Article  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  16. Naeem M, Aftab T, Idrees M, Alam MM, Khan MMA, Uddin M (2017) Plant efficacy and alkaloids production in sadabahar (Catharanthus roseus L.): Role of potent PGRs and mineral nutrients. Catharanthus roseus. Springer Cham, pp 35–57

  17. Pan Q, Chen Y, Wang Q, Yuan F, Xing S, Tian Y, Zhao J, Sun X, Tang K (2010) Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul 60(2):133–141

    Article  CAS  Google Scholar 

  18. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71(06):572–574

    Article  CAS  PubMed  Google Scholar 

  19. Patra B, Pattanaik S, Schluttenhofer C, Yuan L (2018) A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 217(4):1566–1581

    Article  CAS  PubMed  Google Scholar 

  20. Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A et al (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279(51):52940–52948

    Article  CAS  PubMed  Google Scholar 

  21. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36–e36

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pieterse CM, Van Pelt JA, Van Wees SC, Ton J, Léon-Kloosterziel KM, Keurentjes JJ et al (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107(1):51–61

    Article  Google Scholar 

  23. Sahi N, Mostajeran A, Ghanadian M (2022) Changing in the production of anticancer drugs (vinblastine and vincristine) in Catharanthus roseus (L.) G. Don by potassium and ascorbic acid treatments. Plant Soil and Environment 68(1):18–28

    Article  CAS  Google Scholar 

  24. Sekar S, Kandavel D (2010) Interaction of Plant Growth Promoting Rhizobacteria (PGPR) and Endophytes with Medicinal Plants for Phytochemicals. J Phytology 2(7):91–100

    Google Scholar 

  25. Shabani M, Farsi M, Mirshamsi Kakhki A (2014) Evaluation of ethylene effect on expression level of T16H, G10H, DAT and AVLBS genes in Catharanthus roseus. Iran Genet Soc Moden Genet 9(2):151–160 (In Persian)

    Google Scholar 

  26. Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, Yuan L, Pattanaik S (2017) The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci Rep 7(1):1–13

    Google Scholar 

  27. Singh DV, Maithy A, Verma RK, Gupta MM, Kumar S (2000) Simultaneous determination of Catharanthus alkaloids using reversed phase high performance liquid chromatography. J Liquid Chromatogr Relat Technol 23(4):601–607

    Article  CAS  Google Scholar 

  28. Singh S, Pandey SS, Shanker K, Kalra A (2020) Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoidindole alkaloid pathway in Catharanthus roseus roots. J Appl Microbiol 128:1128–1142

    Article  CAS  PubMed  Google Scholar 

  29. Singh S, Pandey SS, Tiwari R, Pandey A, Shanker K, Kalra A (2021) Endophytic consortium with growth-promoting and alkaloid enhancing capabilities enhance key terpenoid indole alkaloids of Catharanthus roseus in the winter and summer seasons. Ind Crops Prod 166:113437

    Article  CAS  Google Scholar 

  30. Soltani N, Nazarian-Firouzabadi F, Shafeinia A, Sadr AS, Shirali M (2020) The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol Biol Rep 47(9):7009–7016

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Manmathan H, Sun C, Peebles CA (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-sEq. BMC Plant Biol 16(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148

    Article  CAS  PubMed  Google Scholar 

  33. Suttipanta N (2011) Characterzation of G10H promoter and isolation of WRKY transcription factors involved in Catharanthus terpenoid indol alkaloid biosynthesis pathway. Dissertation, University of Kentucky, USA. Plant Physiology 157: 2081–2093

  34. Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    Article  PubMed  Google Scholar 

  35. Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    Article  Google Scholar 

  36. Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Pan Y, Chang B, Hu Y, Guo X, Tang Z (2016) Ethylene-induced vinblastine accumulation is related to activate expression of downstream TIA pathway genes in Catharanthus roseus. Hindawi Publishing Corporation. BioMed Research International 8 P

  38. Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M et al (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  PubMed  Google Scholar 

  39. Zhu X, Zeng X, Sun C, Chen S (2014) Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 8(3):285–293

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.H. Keshtkar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, M., Keshtkar, A., Moslemkhany, K. et al. Effect of the plant probiotic bacteria on terpenoid indole alkaloid biosynthesis pathway gene expression profiling, vinblastine and vincristine content in the root of Catharanthus roseus. Mol Biol Rep 49, 10357–10365 (2022). https://doi.org/10.1007/s11033-022-07841-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07841-z

Keywords

Navigation