Skip to main content
Log in

Pathogenesis-related protein-4 (PR-4) gene family in Qingke (Hordeum vulgare L. var. nudum): genome-wide identification, structural analysis and expression profile under stresses

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Pathogenesis-related (PR) proteins are active participants of plant defense against biotic and abiotic stresses. The PR-4 family features a Barwin domain at the C-terminus, which endows the host plant with disease resistance. However, comprehensive analysis of PR-4 genes is still lacking in Qingke (Hordeum vulgare L. var. nudum).

Methods and results

Herein, a total of four PR-4 genes were identified from the genome of Qingke through HMM profiling. Devoid of the chitin-binding domain, these 4 proteins were grouped as class II PR-4s. Phylogenic analysis revealed that 127 PR-4s from 47 species were clustered into 3 major groups, among which the four Qingke PR-4s were claded into group I. Analysis of gene structure demonstrated that no intron was found in 3 out of the 4 Qingke PR-4s, and HOVUSG0928500 was the only gene contained one intron. An array of cis-acting motifs were detected in promoters of Qingke PR-4 genes, including elements associated with hormone response, light response, stress response, growth and development processes and binding sites of transcription factors, implying their diverse role. Expression profiling confirmed that Qingke PR-4s were involved in defense response against drought, cold and powdery mildews infection, and transcription of HOVUSG1974300 and HOVUSG5705400 was differentially regulated by MeJA and SA.

Conclusion

Findings of the study provided insights into the genetic basis of the PR-4 family genes, and would promote further investigation on protein function and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. doi:https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3(5):783–793. doi:https://doi.org/10.1093/mp/ssq035

    Article  CAS  PubMed  Google Scholar 

  3. Ngou BPM, Ahn H-K, Ding P, Jones JDG (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852):110–115. doi:https://doi.org/10.1038/s41586-021-03315-7

    Article  CAS  PubMed  Google Scholar 

  4. Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852):105–109. https://doi.org/10.1038/s41586-021-03316-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan M, Ngou BPM, Ding P, Xin XF (2021) PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin in Plant Biol 62:102030. https://doi.org/10.1016/j.pbi.2021.102030

    Article  CAS  Google Scholar 

  6. Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P (2014) Free Radicals Mediate Systemic Acquired Resistance. Cell Rep 7(2):348–355. https://doi.org/10.1016/j.celrep.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  7. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421

    Article  CAS  PubMed  Google Scholar 

  8. Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem 46(11):941–950. https://doi.org/10.1016/j.plaphy.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Dabravolski SA, Frenkel Z (2021) Diversity and evolution of pathogenesis-related proteins family 4 beyond plant kingdom. Plant Gene 26:100279. https://doi.org/10.1016/j.plgene.2021.100279

    Article  CAS  Google Scholar 

  10. Wang L, Guo ZH, Zhang YB, Wang YJ, Yang G, Yang L, Wang RY, Xie ZK (2017) Isolation and characterization of two distinct Class II PR4 genes from the oriental lily hybrid Sorbonne. Russ J Plant Physl 64(5):707–717. https://doi.org/10.1134/S1021443717050132

    Article  Google Scholar 

  11. Caporale C, Di Berardino I, Leonardi L, Bertini L, Cascone A, Buonocore V, Caruso C (2004) Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett 575(1–3):71–76. https://doi.org/10.1016/j.febslet.2004.07.091

    Article  CAS  PubMed  Google Scholar 

  12. Guevara-Morato M, García de Lacoba M, García-Luque I, Serra MT (2010) Characterization of a pathogenesis-related protein 4 (PR-4) induced in Capsicum chinense L3 plants with dual RNase and DNase activities. J Exp Bot 61(12):3259–3271. https://doi.org/10.1093/jxb/erq148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen P, Melchers LS, Cornelissen B (1994) A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104(1):109–118

    Article  CAS  Google Scholar 

  14. Li X, Xia B, Jiang Y, Wu Q, Wang C, He L, Peng F, Wang R (2009) A new pathogenesis-related protein, LrPR4, from Lycoris radiata, and its antifungal activity against Magnaporthe grisea. Mole Biol Rep 37(2):995. https://doi.org/10.1007/s11033-009-9783-0

    Article  CAS  Google Scholar 

  15. Huet J, Teinkela Mbosso EJ, Soror S, Meyer F, Looze Y, Wintjens R, Wohlkonig A (2013) High-resolution structure of a papaya plant-defence barwin-like protein solved by in-house sulfur-SAD phasing. Acta Crystallogr D 69(10):2017–2026. https://doi.org/10.1107/S0907444913018015

    Article  CAS  PubMed  Google Scholar 

  16. Wang N, Xiao B, Xiong L (2011) Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168(18):2212–2224. https://doi.org/10.1016/j.jplph.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Dai L, Wang D, Xie X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J (2016) The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L. Front Plant Sci 7:695. https://doi.org/10.3389/fpls.2016.00695

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lin S, Guo H, Gong J, Lu M, Lu M-Y, Wang L, Zhang Q, Qin W, Wu D (2018) Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J Cereal Sci 81:69–75. https://doi.org/10.1016/j.jcs.2018.04.001

    Article  CAS  Google Scholar 

  19. Wang L, Zhang C, Yin W, Wei W, Wang Y, Sa W, Liang J (2022) Single-molecule real-time sequencing of the full-length transcriptome of purple garlic (Allium sativum L. cv. Leduzipi) and identification of serine O-acetyltransferase family proteins involved in cysteine biosynthesis. J Sci Food Agr 102(7):2864–2873. https://doi.org/10.1002/jsfa.11627

    Article  CAS  Google Scholar 

  20. Zeng X, Xu T, Ling Z, Wang Y, Li X, Xu S, Xu Q, Zha S, Qimei W, Basang Y, Dunzhu J, Yu M, Yuan H, Nyima T (2020) An improved high-quality genome assembly and annotation of Tibetan hulless barley. Sci Data 7(1):139. https://doi.org/10.1038/s41597-020-0480-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. https://doi.org/10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49(D1):D458–D460. https://doi.org/10.1093/nar/gkaa937

    Article  CAS  PubMed  Google Scholar 

  23. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2020) Pfam: The protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed Central  Google Scholar 

  24. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  25. Sahu SS, Loaiza CD, Kaundal R (2019) Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. AoB Plants. https://doi.org/10.1093/aobpla/plz068

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu ZC, Xiao X, Chou KC (2011) iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mole Biosyst 7(12):3287–3297. https://doi.org/10.1039/c1mb05232b

    Article  CAS  Google Scholar 

  27. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME Suite. Nucleic Acids Res 43(W1):W39–49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  Google Scholar 

  29. Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K (2017) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46(D1):D1190–D1196. https://doi.org/10.1093/nar/gkx1002

    Article  CAS  PubMed Central  Google Scholar 

  30. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH (2019) Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47(W1):W270–w275. https://doi.org/10.1093/nar/gkz357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan H, Zeng X, Yang Q, Xu Q, Wang Y, Jabu D, Sang Z, Tashi N (2018) Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless barley. Sci Rep 8(1):14928. https://doi.org/10.1038/s41598-018-33113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q, Yang K, Long H, Yu M (2017) Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. BMC Genomics 18(1):775. https://doi.org/10.1186/s12864-017-4152-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan H, Zeng X, Ling Z, Wei Z, Wang Y, Zhuang Z, Xu Q, Tang Y, Tashi N (2017) Transcriptome profiles reveal cold acclimation and freezing tolerance of susceptible and tolerant hulless barley genotypes. Acta Physiol Plant 39(12):275. https://doi.org/10.1007/s11738-017-2566-7

    Article  CAS  Google Scholar 

  36. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  39. Cai J, Li P, Luo X, Chang T, Li J, Zhao Y, Xu Y (2018) Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS ONE 13(1):e0190559. https://doi.org/10.1371/journal.pone.0190559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36. https://doi.org/10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S, Mao L, Liu Q, Xia Z, Zhou J, Yuan H, Tai S, Wang Y, Wei Z, Song L, Zha S, Li S, Tang Y, Bai L, Zhuang Z, He W, Zhao S, Fang X, Gao Q, Yin Y, Wang J, Yang H, Zhang J, Henry RJ, Stein N, Tashi N (2018) Origin and evolution of qingke barley in Tibet. Nat Commun 9(1):5433. https://doi.org/10.1038/s41467-018-07920-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pereira Menezes S, de Andrade Silva EM, Matos Lima E, Oliveira de Sousa A, Silva Andrade B, Santos Lima Lemos L, Peres Gramacho K, da Silva Gesteira A, Pirovani CP, Micheli F (2014) The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa. BMC Plant Biol 14(1):161. https://doi.org/10.1186/1471-2229-14-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai S, Dong C, Li B, Dai H (2013) A PR-4 gene identified from Malus domestica is involved in the defense responses against Botryosphaeria dothidea. Plant Physiol Biochem 62:23–32. https://doi.org/10.1016/j.plaphy.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  44. Lu HC, Lin JH, Chua AC, Chung TY, Tsai IC, Tzen JT, Chou WM (2012) Cloning and expression of pathogenesis-related protein 4 from jelly fig (Ficus awkeotsang Makino) achenes associated with ribonuclease, chitinase and anti-fungal activities. Plant Physiol Biochem 56:1–13. https://doi.org/10.1016/j.plaphy.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  45. Franco FP, Dias RO, Toyama D, Henrique-Silva F, Moura DS, Silva-Filho MC (2019) Structural and Functional Characterization of PR-4 SUGARWINs From Sugarcaneand Their Role in Plant Defense. Front Plant Sci 9:1916. https://doi.org/10.3389/fpls.2018.01916

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maia LBL, Pereira HDM, Garratt RC, Brandão-Neto J, Henrique-Silva F, Toyama D, Dias RO, Bachega JFR, Peixoto JV, Silva-Filho MC (2021) Structural and Evolutionary Analyses of PR-4 SUGARWINs Points to a Different Pattern of Protein Function. Front Plant Sci 12:734248. https://doi.org/10.3389/fpls.2021.734248

    Article  PubMed  PubMed Central  Google Scholar 

  47. Singh A, Jain D, Tyagi C, Singh S, Kumar S, Singh IK (2018) In silico prediction of active site and in vitro DNase and RNase activities of Helicoverpa-inducible pathogenesis related-4 protein from Cicer arietinum. Int J Biol Macromol 113:869–880. https://doi.org/10.1016/j.ijbiomac.2018.03.027

    Article  CAS  PubMed  Google Scholar 

  48. Bertini L, Leonardi L, Caporale C, Tucci M, Cascone N, Di Berardino I, Buonocore V, Caruso C (2003) Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci 164(6):1067–1078. https://doi.org/10.1016/S0168-9452(03)00112-2

    Article  CAS  Google Scholar 

  49. Brederode FT, Linthorst HJM, Bol JF (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17(6):1117–1125. https://doi.org/10.1007/BF00028729

    Article  CAS  PubMed  Google Scholar 

  50. Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK (2014) Pathogenesis-related protein 4b interacts with leucine-rich repeat protein 1 to suppress PR4b-triggered cell death and defense response in pepper. Plant J 77(4):521–533. https://doi.org/10.1111/tpj.12400

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Science and Technology Project of Qinghai Province (2019-ZJ-962Q). Dr. Le Wang was supported by the ‘Kunlun Elite-Innovation & Carving out Talent’ program of Qinghai Province.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LW, JL. Performed bioinformatic analysis: LW, HL, JZ, QS. Wrote the paper: LW, JL, LW, WY, WS.

Corresponding author

Correspondence to Jian Liang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lu, H., Zhan, J. et al. Pathogenesis-related protein-4 (PR-4) gene family in Qingke (Hordeum vulgare L. var. nudum): genome-wide identification, structural analysis and expression profile under stresses. Mol Biol Rep 49, 9397–9408 (2022). https://doi.org/10.1007/s11033-022-07794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07794-3

Keywords

Navigation