Skip to main content

Advertisement

Log in

CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe’s food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism’s genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

There is no data pertaining to this study.

References

  1. Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-Combo system. Nat Plants 8(5):513–525. doi: https://doi.org/10.1038/s41477-022-01151-9

    Article  CAS  PubMed  Google Scholar 

  2. Deb S, Choudhury A, Kharbyngar B, Satyawada RR Applications of CRISPR/Cas9 technology for modification of the plant genome (2022).Genetica150(1):1–12. doi: https://doi.org/10.1007/s10709-021-00146-2

  3. Charpentier E, Doudna JA (2013) Biotechnology: Rewriting a genome. Nature 495:50–51. https://doi.org/10.1038/495050a

    Article  CAS  PubMed  Google Scholar 

  4. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. https://doi.org/10.1016/j.cell.2014.02.001

  5. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926. https://doi.org/10.1093/mp/ssu009

    Article  CAS  PubMed  Google Scholar 

  7. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karvelis T, Gasiunas G, Young J et al (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:253. https://doi.org/10.1186/s13059-015-0818-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinert J, Schmidt C, Puchta H (2017) Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aureus for Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thaliana. Methods Mol Biol 1669:365–376. https://doi.org/10.1007/978-1-4939-7286-9_27

    Article  CAS  PubMed  Google Scholar 

  11. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485. https://doi.org/10.1038/nature14592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu X, Meng X, Liu Q et al (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16:292–297. https://doi.org/10.1111/pbi.12771

    Article  CAS  PubMed  Google Scholar 

  13. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Molla KA, Yang Y (2020) CRISPR-Cas-mediated single base editing at more than one locus in rice genome. In: Islam MT, Bhowmik PK, Molla KA (eds) CRISPR-Cas Methods. Springer US, New York, NY, pp 51–62

    Chapter  Google Scholar 

  15. Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. Prog Mol Biol Transl Sci 149:111–132. https://doi.org/10.1016/bs.pmbts.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  16. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575. https://doi.org/10.1073/pnas.1420294112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma X, Zhang Q, Zhu Q et al (2015) A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284. https://doi.org/10.1016/j.molp.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Tsai SQ, Wyvekens N, Khayter C et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576. https://doi.org/10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferreira R, Skrekas C, Nielsen J, David F (2018) Multiplexed CRISPR/Cas9 genome editing and gene regulation using Csy4 in Saccharomyces cerevisiae. ACS Synth Biol 7:10–15. https://doi.org/10.1021/acssynbio.7b00259

    Article  CAS  PubMed  Google Scholar 

  21. Qi L, Haurwitz RE, Shao W et al (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30:1002–1006. https://doi.org/10.1038/nbt.2355

    Article  CAS  PubMed  Google Scholar 

  22. Čermák T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Shen L, Hu P et al (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61:1201–1205. https://doi.org/10.1111/jipb.12774

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Bai Y, Wu G et al (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  27. Prihatna C, Barbetti MJ, Barker SJ (2018) A novel tomato fusarium wilt tolerance gene. Front Microbiol 9:1226. https://doi.org/10.3389/fmicb.2018.01226

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482. https://doi.org/10.1038/s41598-017-00578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santillán Martínez MI, Bracuto V, Koseoglou E et al (2020) CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol 20:284. https://doi.org/10.1186/s12870-020-02497-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Wang L, Zhao R et al (2018) Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. J Agric Food Chem 66:8949–8956. https://doi.org/10.1021/acs.jafc.8b02191

    Article  CAS  PubMed  Google Scholar 

  31. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou J, Peng Z, Long J et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643. https://doi.org/10.1111/tpj.12838

    Article  CAS  PubMed  Google Scholar 

  33. Kim Y-A, Moon H, Park C-J (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice (N Y) 12:67. https://doi.org/10.1186/s12284-019-0325-7

  34. Oliva R, Ji C, Atienza-Grande G et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37:1344–1350. https://doi.org/10.1038/s41587-019-0267-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zafar K, Khan MZ, Amin I et al (2020) Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Front Plant Sci 11:575. https://doi.org/10.3389/fpls.2020.00575

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17:665–673. https://doi.org/10.1111/pbi.13006

    Article  CAS  PubMed  Google Scholar 

  37. Peng A, Chen S, Lei T et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ali Z, Abulfaraj A, Idris A et al (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. https://doi.org/10.1186/s13059-015-0799-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yin K, Han T, Liu G et al (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926. https://doi.org/10.1038/srep14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153. https://doi.org/10.1111/mpp.12375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gomez MA, Lin ZD, Moll T et al (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17:421–434. https://doi.org/10.1111/pbi.12987

    Article  CAS  PubMed  Google Scholar 

  42. Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288. https://doi.org/10.1111/mpp.12417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045. https://doi.org/10.3389/fpls.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu J (2017) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10:1007–1010. https://doi.org/10.1016/j.molp.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  45. Ji X, Zhang H, Zhang Y et al (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144. https://doi.org/10.1038/nplants.2015.144

    Article  CAS  PubMed  Google Scholar 

  46. Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X, Zhou G (2019) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J 17(7):17. https://doi.org/10.1111/pbi.13095

    Article  CAS  Google Scholar 

  47. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983. https://doi.org/10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Liu Q, Yang X et al (2020) CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f.sp. niveum. Plant Cell Rep 39:589–595. https://doi.org/10.1007/s00299-020-02516-0

    Article  CAS  PubMed  Google Scholar 

  49. Malnoy M, Viola R, Jung M-H et al (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front Plant Sci 7:1904. https://doi.org/10.3389/fpls.2016.01904

  50. Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting tcnpr3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268. https://doi.org/10.3389/fpls.2018.00268

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gumtow R, Wu D, Uchida J, Tian M (2018) A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol Plant Microbe Interact 31:363–373. https://doi.org/10.1094/MPMI-06-17-0131-FI

    Article  CAS  PubMed  Google Scholar 

  52. Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 89:3–9. https://doi.org/10.1016/j.fgb.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Z, Ge X, Luo X et al (2018) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842. https://doi.org/10.3389/fpls.2018.00842

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu Z, Xu X, Gong Q et al (2019) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable tale-binding elements of multiple susceptibility genes in rice. Mol Plant 12:1434–1446. https://doi.org/10.1016/j.molp.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  55. Yin K, Han T, Xie K et al (2019) Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res 1:9. https://doi.org/10.1186/s42483-019-0017-7

    Article  Google Scholar 

  56. Tripathi JN, Ntui VO, Ron M et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2:46. https://doi.org/10.1038/s42003-019-0288-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kis A, Hamar É, Tholt G et al (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17:1004–1006. https://doi.org/10.1111/pbi.13077

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baltes NJ, Hummel AW, Konecna E et al (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145. https://doi.org/10.1038/nplants.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ali Z, Ali S, Tashkandi M et al (2016) CRISPR/Cas9-Mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912. https://doi.org/10.1038/srep26912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tashkandi M, Ali Z, Aljedaani F et al (2018) Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996. https://doi.org/10.1080/15592324.2018.1525996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehta D, Stürchler A, Anjanappa RB et al (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol 20:80. https://doi.org/10.1186/s13059-019-1678-3

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Z, Hardcastle TJ, Canto Pastor A et al (2018) A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev 32:1155–1160. https://doi.org/10.1101/gad.313601.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang T, Zheng Q, Yi X et al (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415–1423. https://doi.org/10.1111/pbi.12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aman R, Ali Z, Butt H et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1. https://doi.org/10.1186/s13059-017-1381-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927. https://doi.org/10.1111/pbi.12927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sandhu KS, Mihalyov PD, Lewien MJ et al (2021) Combining genomic and phenomic information for predicting grain protein content and grain yield in spring wheat. Front Plant Sci 12:613300. https://doi.org/10.3389/fpls.2021.613300

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sandhu KS, Merrick LF, Sankaran S et al (2022) Prospectus of genomic selection and phenomics in cereal, legume and oilseed breeding programs. Front Genet 12. https://doi.org/10.3389/fgene.2021.829131

  68. Gill T, Gill SK, Saini DK et al (2022) A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. https://doi.org/10.1007/s43657-022-00048-z. Phenomics

  69. Arya S, Sandhu KS, Singh J, Kumar S (2022) Deep learning: as the new frontier in high-throughput plant phenotyping. Euphytica 218:47. https://doi.org/10.1007/s10681-022-02992-3

    Article  Google Scholar 

  70. Sandhu KS, Patil SS, Aoun M, Carter AH (2022) Multi-trait multi-environment genomic prediction for end-use quality traits in winter wheat. Front Genet 13. https://doi.org/10.3389/fgene.2022.831020

  71. Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Li J, Chen S et al (2020) An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genomics. https://doi.org/10.1007/s00438-020-01669-7

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato Plants. J Agric Food Chem 65:8674–8682. https://doi.org/10.1021/acs.jafc.7b02745

    Article  CAS  PubMed  Google Scholar 

  74. Li R, Liu C, Zhao R et al (2019) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19:38. https://doi.org/10.1186/s12870-018-1627-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Curtin SJ, Xiong Y, Michno J-M et al (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137. https://doi.org/10.1111/pbi.12857

    Article  CAS  PubMed  Google Scholar 

  76. Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438. https://doi.org/10.1038/s41598-017-14832-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Songmei L, Jie J, Yang L et al (2019) Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Sci 26:88–97. https://doi.org/10.1016/j.rsci.2019.01.002

    Article  Google Scholar 

  78. Wang F-Z, Chen M-X, Yu L-J et al (2017) Osarm1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868. https://doi.org/10.3389/fpls.2017.01868

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li J, Meng X, Zong Y et al (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139. https://doi.org/10.1038/nplants.2016.139

    Article  CAS  PubMed  Google Scholar 

  80. Ortega JL, Rajapakse W, Bagga S et al (2018) An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein. PLoS ONE 13:e0194666. https://doi.org/10.1371/journal.pone.0194666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Veillet F, Perrot L, Chauvin L et al (2019) Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 20. https://doi.org/10.3390/ijms20020402

  82. Sun Y, Zhang X, Wu C et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631. https://doi.org/10.1016/j.molp.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  83. Li Z, Liu Z-B, Xing A et al (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiol 169:960–970. https://doi.org/10.1104/pp.15.00783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tian S, Jiang L, Cui X et al (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37:1353–1356. https://doi.org/10.1007/s00299-018-2299-0

    Article  CAS  PubMed  Google Scholar 

  85. Zhou H, He M, Li J et al (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395. https://doi.org/10.1038/srep37395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li J, Zhang H, Si X et al (2017) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics 44:465–468. https://doi.org/10.1016/j.jgg.2017.02.002

    Article  PubMed  Google Scholar 

  87. Klap C, Yeshayahou E, Bolger AM et al (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647. https://doi.org/10.1111/pbi.12662

    Article  CAS  PubMed  Google Scholar 

  88. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41. https://doi.org/10.1007/s10142-017-0572-x

    Article  CAS  PubMed  Google Scholar 

  89. Li R, Zhang L, Wang L et al (2018) Reduction of tomato-plant chilling tolerance by CRISPR-Cas9-Mediated SlCBF1 mutagenesis. J Agric Food Chem 66:9042–9051. https://doi.org/10.1021/acs.jafc.8b02177

    Article  CAS  PubMed  Google Scholar 

  90. Shen C, Que Z, Xia Y et al (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547. https://doi.org/10.1007/s12374-016-0400-1

    Article  CAS  Google Scholar 

  91. Osakabe Y, Watanabe T, Sugano SS et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. https://doi.org/10.1038/srep26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Richter J, Watson JM, Stasnik P et al (2018) Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci Rep 8:12182. https://doi.org/10.1038/s41598-018-30711-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bonifacio J (2019) Transformation of Arabidopsis Thaliana with CRISPR/Cas9 -modified AtHMA4 (Heavy-metal ATPase-4. Using Floral Dip to Increase Zn2 + Tolerance

  94. Nieves-Cordones M, Mohamed S, Tanoi K et al (2017) Production of low-Cs + rice plants by inactivation of the K + transporter OsHAK1 with the CRISPR-Cas system. Plant J 92:43–56. https://doi.org/10.1111/tpj.13632

    Article  CAS  PubMed  Google Scholar 

  95. Mao X, Zheng Y, Xiao K et al (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467. https://doi.org/10.1016/j.bbrc.2017.11.045

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Y, Chen K, Zhao F-J et al (2018) OsATX1 interacts with heavy metal P1B-Type ATPases and affects copper transport and distribution. Plant Physiol 178:329–344. https://doi.org/10.1104/pp.18.00425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen Y, Wang Z, Ni H et al (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60:520–523. https://doi.org/10.1007/s11427-017-9021-5

    Article  CAS  PubMed  Google Scholar 

  98. Svitashev S, Young JK, Schwartz C et al (2015) Targeted Mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and Guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sauer NJ, Narváez-Vásquez J, Mozoruk J et al (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928. https://doi.org/10.1104/pp.15.01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu R, Li H, Qin R et al (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7:5. https://doi.org/10.1186/s12284-014-0005-6

    Article  PubMed  Google Scholar 

  101. Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443. https://doi.org/10.1038/nbt.3833

    Article  CAS  PubMed  Google Scholar 

  102. Butt H, Eid A, Momin AA et al (2019) CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol 20:73. https://doi.org/10.1186/s13059-019-1680-9

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang R, Liu J, Chai Z et al (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485. https://doi.org/10.1038/s41477-019-0405-0

    Article  CAS  PubMed  Google Scholar 

  104. Zong Y, Song Q, Li C et al (2018) Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol. https://doi.org/10.1038/nbt.4261

    Article  PubMed  Google Scholar 

  105. Miao C, Xiao L, Hua K et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA 115:6058–6063. https://doi.org/10.1073/pnas.1804774115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotechnol 22(2):239–244. https://doi.org/10.1016/j.copbio.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  107. Beckie HJ, Busi R, Bagavathiannan MV, Martin SL (2019) Herbicide resistance gene flow in weeds: under-estimated and under-appreciated. Agric Ecosyst Environ 283:106566. https://doi.org/10.1016/j. Agee.2019.06.005

    Article  Google Scholar 

  108. Gao (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276

    Article  CAS  PubMed  Google Scholar 

  109. Rim Lassoued DM, Macall, Stuart J, Smyth, Peter WB, Phillips HH (2019) Risk and safety considerations of genome edited crops: Expert opinion. Curr Res Biotechnol 1:11–21. https://doi.org/10.1016/j.crbiot.2019.08.001

    Article  Google Scholar 

  110. Bhattacharya A, Parkhi V, Char B (2021) Genome editing for crop improvement: A perspective from India. In Vitro Cell Dev Biol Plant 57:565–573. https://doi.org/10.1007/s11627-021-10184-2

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hilbeck A, Meyer H, Wynne B, Millstone E (2020) GMO regulations and their interpretation: how EFSA’s guidance on risk assessments of GMOs is bound to fail. Environ Sci Eur. https://doi.org/10.1186/s12302-020-00325 -6

  112. Norris AL, Lee SS, Greenlees KJ, Tadesse DA, Miller MF, Lombardi HA (2020) Template plasmid integration in germline genome-edited cattle. Nat Biotechnol 38(2):163–164. https://doi.org/10.1038/s41587-019-0394-6

    Article  CAS  PubMed  Google Scholar 

  113. Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R (2019) What is the available evidence for the range of applications of genome editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ Evid 8:27. https://doi.org/10.1186/s13750-019-0171-5

    Article  Google Scholar 

  114. Kawall K, Cotter J, Then C (2020) Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci Eur 32:106. https://doi.org/10.1186/s12302-020-00361-2

    Article  CAS  Google Scholar 

  115. Turnbull C, Lillemo M, Hvoslef-Eide TAK (2021) Global regulation of genetically modified crops amid the Gene edited crop boom - A Review. Front Plant Sci 24:12:630396

    Article  Google Scholar 

  116. El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front. Plant Sci.11, 56 (2020)

  117. Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY (2019) Challenges and perspectives in homology-directed gene targeting in monocot plants. Rice 12:95. doi: https://doi.org/10.1186/s12284-019-0355

    Article  PubMed  PubMed Central  Google Scholar 

  118. Schmidt SM, Belisle M, Frommer WB (2020) The evolving landscape around genome editing in agriculture. EMBO Rep 21:e50680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, Arora N (2021) Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Front Plant Sci 12:673576. doi: https://doi.org/10.3389/fpls.2021.673576

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JS and KSS collaborate, outline the study, and invite the members; JS, DS, GSB, KSS, SHW, RK, AK, and SS write and edit the manuscript. All authors contributed equally to the work.

Corresponding author

Correspondence to Satnam Singh.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This is a review article, thus no ethical approval is applicable.

Consent to participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Sharma, D., Brar, G.S. et al. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Mol Biol Rep 49, 11443–11467 (2022). https://doi.org/10.1007/s11033-022-07741-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07741-2

Navigation