Skip to main content

Advertisement

Log in

Microglia-induced autophagic death of neurons via IL-6/STAT3/miR-30d signaling following hypoxia/ischemia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

There is a relationship between autophagy and the occurrence, maintenance, and progression of several neurodegenerative diseases. The activation of microglia after ischemia contributes to neuronal injury via proinflammatory cytokines and neurotoxic elements. The purpose of this study was to evaluate the function of autophagy in the microglia-mediated death of neuronal cells.

Methods and results

Microglial activation by oxygen/glucose deprivation induced both apoptosis and autophagy in neuron-like PC12 cells. Microglia-derived interleukin (IL)-6 induced PC12 cell apoptosis in vitro; however, this effect was inhibited by the autophagy inhibitor chloroquine. Further analysis demonstrated that miR-30d in PC12 cells suppressed microglia-induced PC12 apoptosis and autophagy by directly targeting autophagy protein 5. Moreover, microglia-derived IL-6 activated signal transducer and activator of transcription 3 (STAT3), which can then directly repress miR-30d genes via a conserved STAT3-binding site in its promoter, thereby promoting PC12 cell autophagy and apoptosis.

Conclusions

Our study identified IL-6-dependent autophagy-related signaling between microglia and neurons, which contributed to neuronal apoptosis. Importantly, we also provided potential therapeutic targets for ischemic treatment via the interruption of proinflammatory signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Akkoc Y, Gozuacik D (2020) MicroRNAs as major regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell Res 1867:118662

    Article  CAS  PubMed  Google Scholar 

  2. Basak I, Patil KS, Alves G et al (2016) microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 73:811–827

    Article  CAS  PubMed  Google Scholar 

  3. Beilina A, Cookson MR (2016) Genes associated with Parkinson’s disease: regulation of autophagy and beyond. J Neurochem 139(Suppl 1):91–107

    Article  CAS  PubMed  Google Scholar 

  4. Deng YY, Lu J, Ling EA et al (2011) Role of microglia in the process of inflammation in the hypoxic developing brain. Front Biosci (Schol Ed) 3:884–900

    Article  Google Scholar 

  5. Dos Santos IRC, Dias MNC, Gomes-Leal W (2021) Microglial activation and adult neurogenesis after brain stroke. Neural Regen Res 16:456–459

    Article  PubMed  Google Scholar 

  6. Finsen B, Owens T (2011) Innate immune responses in central nervous system inflammation. FEBS Lett 585:3806–3812

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Huerta P, Troncoso-Escudero P, Jerez C, Hetz C et al (2016) The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases? Brain Res 1649:173–180

    Article  CAS  PubMed  Google Scholar 

  8. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  9. Harms AS, Ferreira SA, Romero-Ramos M (2021) Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol 141:527–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huan S, Jin J, Shi CX et al (2020) Overexpression of miR-146a inhibits the apoptosis of hippocampal neurons of rats with cerebral hemorrhage by regulating autophagy. Hum Exp Toxicol 39:1178–1189

    Article  CAS  PubMed  Google Scholar 

  11. Ichimiya T, Yamakawa T, Hirano T et al (2020) Autophagy and Autophagy-Related Diseases: A Review.Int J Mol Sci21

  12. Kam TI, Hinkle JT, Dawson TM et al (2020) Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol Dis 144:105028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katuri A, Bryant J, Heredia A et al (2019) Role of the inflammasomes in HIV-associated neuroinflammation and neurocognitive disorders. Exp Mol Pathol 108:64–72

    Article  CAS  PubMed  Google Scholar 

  14. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lana D, Ugolini F, Giovannini MG (2020) An Overview on the Differential Interplay Among Neurons-Astrocytes-Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia. Front Cell Neurosci 14:585833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM et al (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem 307:63–69

    Article  CAS  PubMed  Google Scholar 

  17. Li B, Huang Z, Meng J et al (2020) MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3beta pathway. Mol Cell Probes 51:101497

    Article  CAS  PubMed  Google Scholar 

  18. Liddelow SA, Marsh SE, Stevens B (2020) Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime? Trends Immunol 41:820–835

    Article  CAS  PubMed  Google Scholar 

  19. Lim Y, Cho H, Kim EK (2016) Brain metabolism as a modulator of autophagy in neurodegeneration. Brain Res 1649:158–165

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Mayne K, White JA, McMurran CE et al (2020) Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 12:572090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Min YJ, Ling EA, Li F (2020) Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 11:580428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 48:277–286

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi M, Hirata N, Tanaka T et al (2020) Autophagy as a modulator of cell death machinery. Cell Death Dis 11:517

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Obulesu M, Jhansilakshmi M (2014) Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 124:227–235

    Article  CAS  PubMed  Google Scholar 

  26. Quinlan S, Kenny A, Medina M et al (2017) MicroRNAs in Neurodegenerative Diseases. Int Rev Cell Mol Biol 334:309–343

    Article  CAS  PubMed  Google Scholar 

  27. Shao Z, Dou S, Zhu J et al (2020) The Role of Mitophagy in Ischemic Stroke. Front Neurol 11:608610

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sheng R, Liu XQ, Zhang LS et al (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325

    Article  CAS  PubMed  Google Scholar 

  29. Slota JA, Booth SA, Noncoding (2019) RNA 5

  30. Song DD, Zhang TT, Chen JL et al (2017) Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 8:e2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Streit WJ, Conde JR, Fendrick SE et al (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27:685–691

    Article  PubMed  Google Scholar 

  32. Su P, Zhang J, Wang D et al (2016) The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 319:155–167

    Article  CAS  PubMed  Google Scholar 

  33. Sun L, Liu A, Zhang J et al (2018) miR-23b improves cognitive impairments in traumatic brain injury by targeting ATG12-mediated neuronal autophagy. Behav Brain Res 340:126–136

    Article  CAS  PubMed  Google Scholar 

  34. Takeda H, Yamaguchi T, Yano H et al (2021) Microglial metabolic disturbances and neuroinflammation in cerebral infarction. J Pharmacol Sci 145:130–139

    Article  CAS  PubMed  Google Scholar 

  35. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60:251–266

    Article  CAS  Google Scholar 

  36. Wang L, Song LF, Chen XY et al (2019) MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 25:112–122

    Article  CAS  PubMed  Google Scholar 

  37. Wang P, Zhang J, Zhang L et al (2013) MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145:1133–1143e1112

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Fang Y, Huang Q et al (2021) An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp Neurol 340:113684

    Article  CAS  PubMed  Google Scholar 

  39. Wen Z, Zhang J, Tang P et al (2018) Overexpression of miR185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 17:131–137

    CAS  PubMed  Google Scholar 

  40. Xu D, Kong T, Zhang S et al (2021) Orexin-A protects against cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through OX1R-mediated MAPK/ERK/mTOR pathway. Cell Signal 79:109839

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Dong LY, Li YJ et al (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 9:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang L, Dong LY, Li YJ et al (2012) miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60:1888–1895

    Article  PubMed  Google Scholar 

  43. Zhang L, Li YJ, Wu XY et al (2015) MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J Neurochem 132:713–723

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Cao Y, Liu C (2020) Autophagy and Ischemic Stroke. Adv Exp Med Biol 1207:111–134

    Article  CAS  PubMed  Google Scholar 

  45. Zhao F, Qu Y, Zhu J, Zhang L et al (2017) miR-30d-5p Plays an Important Role in Autophagy and Apoptosis in Developing Rat Brains After Hypoxic-Ischemic Injury. J Neuropathol Exp Neurol 76:709–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors listed are grateful for the technical support of Jianmin Luo from Fudan University Shanghai Cancer Center, Shanghai.

Funding

This study was supported by the National Science Fund of China (81100795 and 81471103), Shanghai Pujiang Program (2019PJD013), and Natural Science Foundation of Shanghai (22ZR1422100).

Author information

Authors and Affiliations

Authors

Contributions

JS organized and implemented the research projects, carried out the statistical analysis, and wrote the first draft. YJL and XHF planned the study project, designed the statistical analysis, and collected comments on manuscripts. YD organized the research projects, reviewed the statistical analysis, and prepared reviews and comments on manuscripts. WSW conceived and organized the research projects, designed and performed the statistical analysis, and prepared reviews and comments on manuscripts. All authors made contributions to this paper and reviewed the submitted manuscript.

Corresponding author

Correspondence to Li Zhang M.D., PhD..

Ethics declarations

Ethics approval and consent to participate

All animal tests were performed according to the guidelines of the National Institution of the Care and Application of Lab Animals. The research scheme was approved by the Commission of the Application of Live Animals for Research and Development, Fudan University, Shanghai.

Consent for publication

All authors listed agree to publish the manuscript.

Conflict of interest

No competing financial interests are declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, J., Fang, XH., Li, YJ. et al. Microglia-induced autophagic death of neurons via IL-6/STAT3/miR-30d signaling following hypoxia/ischemia. Mol Biol Rep 49, 7697–7707 (2022). https://doi.org/10.1007/s11033-022-07587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07587-8

Keywords

Navigation