Skip to main content
Log in

Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Homeodomain leucine zipper (HD-ZIP) transcription factors play roles in regulating plant development and responses to abiotic stresses; however, how HD-ZIP genes in Medicago truncatula are involved in abiotic stress response remains elusive.

Methods and results

The HD-ZIP I genes in Medicago truncatula were identified and characterized, and their expression patterns in different tissues and under different abiotic stresses were analyzed. A total of 15 Medicago truncatula HD-ZIP I genes were identified and a phylogenetic analysis of HD-ZIP I proteins in Arabidopsis thaliana and Medicago truncatula was conducted. Fifteen HD-ZIP I genes showed diverse tissue preferences. Among them, expressions of MtHB22 and MtHB51 were specially detected in vegetative buds. In addition, they responded to various abiotic stresses, including salinity and osmotic stress and abscisic acid (ABA). For instance, MtHB7 and MtHB12 expression levels were found to be positively associated with salt, osmotic stress and ABA in both shoots and roots, while MtHB13 and MtHB23 were negatively associated with these stresses in Medicago truncatula.

Conclusion

The HD-ZIP I genes in Medicago truncatula are evolutionarily conserved, but also exhibit gene duplication and gene loss events. Differential expression analysis of Medicago truncatula HD-ZIP I genes indicated their crucial roles in abiotic stress responses. Our genome-wide analysis of the HD-ZIP I transcription factor family in Medicago truncatula provided a valuable reference for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the results of this article are included within the article and in the provided supplementary files.

References

  1. Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: Controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868. https://doi.org/10.1890/0012-9658(2003)084[0858:Msarcr]2.0.Co;2

    Article  Google Scholar 

  2. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95. https://doi.org/10.1104/pp.108.129791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426. https://doi.org/10.1016/j.tplants.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  4. Elhiti M, Stasolla C (2009) Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav 4:86–88. https://doi.org/10.4161/psb.4.2.7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang Y, Wang J, Bao X, Liang M, Lou H, Zhao J, Sun M, Liang J, Jin L, Li G, Qiu Y, Liu K (2019) Genome-wide identification and expression profile of HD-ZIP genes in physic nut and functional analysis of the JcHDZ16 gene in transgenic rice. BMC Plant Biol 19:298. https://doi.org/10.1186/s12870-019-1920-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basso MF, Costa JA, Ribeiro TP, Arraes FBM, Lourenco-Tessutti IT, Macedo AF, Das Neves MR, Nardeli SM, Arge LW, Perez CEA, Silva PLR, de Macedo LLP, Lisei-de-Sa ME, Amorim RMS, Pinto ERD, Silva MCM, Morgante CV, Floh EIS, Alves-Ferreira M, Grossi-de-Sa MF (2021) Overexpression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance. Plant Physiol Biochem 165:80–93. https://doi.org/10.1016/j.plaphy.2021.05.009

    Article  CAS  PubMed  Google Scholar 

  7. Zhao S, Wang HB, Jia XM, Gao HB, Mao K, Ma FW (2021) The HD-Zip I transcription factor MdHB7-like confers tolerance to salinity in transgenic apple (Malus domestica). Physiol Plant 172:1452–1464. https://doi.org/10.1111/ppl.13330

    Article  CAS  PubMed  Google Scholar 

  8. Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J, Ohme-Takagi M, Kim D, Park J, Kim GT, Cheon CI (2015) Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol 205:316–328. https://doi.org/10.1111/nph.12998

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S (2017) Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnol J 16:1227–1240. https://doi.org/10.1111/pbi.12865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sen S, Chakraborty J, Ghosh P, Basu D, Das S (2017) Chickpea WRKY70 regulates the expression of a homeodomain-leucine zipper (HD-Zip) I transcription factor CaHDZ12, which confers abiotic stress tolerance in transgenic tobacco and chickpea. Plant Cell Physiol 58:1934–1952. https://doi.org/10.1093/pcp/pcx126

    Article  CAS  PubMed  Google Scholar 

  11. Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z (2016) The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J 85:16–29. https://doi.org/10.1111/tpj.13085

    Article  CAS  PubMed  Google Scholar 

  12. Cao L, Yu Y, DuanMu H, Chen C, Duan X, Zhu P, Chen R, Li Q, Zhu Y, Ding X (2016) A novel glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol 16:184. https://doi.org/10.1186/s12870-016-0872-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakuma S, Pourkheirandish M, Hensel G, Kumlehn J, Stein N, Tagiri A, Yamaji N, Ma JF, Sassa H, Koba T, Komatsuda T (2013) Divergence of expression pattern contributed to neofunctionalization of duplicated HD-Zip I transcription factor in barley. New Phytol 197:939–948. https://doi.org/10.1111/nph.12068

    Article  CAS  PubMed  Google Scholar 

  14. Cabello JV, Arce AL, Chan RL (2012) The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J 69:141–153. https://doi.org/10.1111/j.1365-313X.2011.04778.x

    Article  CAS  PubMed  Google Scholar 

  15. Ebrahimian-Motlagh S, Ribone PA, Thirumalaikumar VP, Allu AD, Chan RL, Mueller-Roeber B, Balazadeh S (2017) JUNGBRUNNEN1 confers drought tolerance downstream of the HD-Zip I transcription factor AtHB13. Front Plant Sci 8:2118. https://doi.org/10.3389/fpls.2017.02118

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jain M, Tyagi AK, Khurana JP (2008) Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275:2845–2861. https://doi.org/10.1111/j.1742-4658.2008.06424.x

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharjee A, Khurana JP, Jain M (2016) Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic arabidopsis suggest their role in abiotic stress response. Front Plant Sci 7:627. https://doi.org/10.3389/fpls.2016.00627

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PB (2012) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80:571–585. https://doi.org/10.1007/s11103-012-9967-1

    Article  CAS  PubMed  Google Scholar 

  19. Song SY, Chen Y, Zhao MG, Zhang WH (2012) A novel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environ Exp Bot 80:1–9. https://doi.org/10.1016/j.envexpbot.2012.02.001

    Article  CAS  Google Scholar 

  20. Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell 22:2171–2183. https://doi.org/10.1105/tpc.110.074823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Gao ZQ, Li RH, Xu Y, Kong YZ, Zhou GK, Meng CX, Hu RB (2020) Genome-wide identification and expression profiling of HD-ZIP gene family in Medicago truncatula. Genomics 112:3624–3635. https://doi.org/10.1016/j.ygeno.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  22. Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM (2016) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580. https://doi.org/10.1093/nar/gkv1209

    Article  CAS  PubMed  Google Scholar 

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  24. Arce AL, Raineri J, Capella M, Cabello JV, Chan RL (2011) Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biol. https://doi.org/10.1186/1471-2229-11-42

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–324. https://doi.org/10.1093/bioinformatics/btm585

    Article  CAS  PubMed  Google Scholar 

  26. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  Google Scholar 

  27. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook Humana Press Inc, New Jersey. https://doi.org/10.1385/1-59259-890-0:571

  28. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH (2019) Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47:W270–W275. https://doi.org/10.1093/nar/gkz357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49. https://doi.org/10.1093/nar/gkr1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin Krzywinski JS, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–45. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513. https://doi.org/10.1111/j.1365-313X.2008.03519.x

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. Romani F, Reinheimer R, Florent SN, Bowman JL, Moreno JE (2018) Evolutionary history of homeodomain leucine zipper transcription factors during plant transition to land. New Phytol 219:408–421. https://doi.org/10.1111/nph.15133

    Article  CAS  PubMed  Google Scholar 

  39. Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139:509–518. https://doi.org/10.1104/pp.105.063461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li L, Zheng T, Zhuo X, Li S, Qiu L, Wang J, Cheng T, Zhang Q (2019) Genome-wide identification, characterization and expression analysis of the HD-Zip gene family in the stem development of the woody plant Prunus mume. PeerJ 7:e7499. https://doi.org/10.7717/peerj.7499

    Article  PubMed  PubMed Central  Google Scholar 

  41. Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engstrom P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PB (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87–103. https://doi.org/10.1007/s11103-007-9255-7

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B (2011) Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS ONE 6:e28488. https://doi.org/10.1371/journal.pone.0028488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Zhuang L, Zhang J, Yu J, Yang Z, Huang B (2019) Identification and characterization of novel homeodomain leucine zipper (HD-Zip) transcription factors associated with heat tolerance in perennial ryegrass. Environ Exp Bot 160:1–11. https://doi.org/10.1016/j.envexpbot.2018.12.023

    Article  CAS  Google Scholar 

  44. Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB (2014) Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 15:950. https://doi.org/10.1186/1471-2164-15-950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G (2019) Genome-wide identification and expression analysis of HD-ZIP I gene subfamily in Nicotiana tabacum. Genes (Basel) 10:575. https://doi.org/10.3390/genes10080575

    Article  CAS  Google Scholar 

  46. Ding Z, Fu L, Yan Y, Tie W, Xia Z, Wang W, Peng M, Hu W, Zhang J (2017) Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava. PLoS ONE 12:e0173043. https://doi.org/10.1371/journal.pone.0173043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038. https://doi.org/10.1093/emboj/cdf316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. https://doi.org/10.1186/1471-2229-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miguel VN, Manavella PA, Chan RL, Capella MA (2020) The AtHB1 transcription factor controls the miR164-CUC2 regulatory node to modulate leaf development. Plant Cell Physiol 61:659–670. https://doi.org/10.1093/pcp/pcz233

    Article  CAS  PubMed  Google Scholar 

  50. Ribone PA, Capella M, Arce AL, Chan RL (2017) A uORF Represses the transcription factor AtHB1 in aerial tissues to avoid a deleterious phenotype. Plant Physiol 175:1238–1253. https://doi.org/10.1104/pp.17.01060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Henriksson E, Soderman E, Henriksson KN, Sundberg E, Engstrom P (2003) The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 264:228–239. https://doi.org/10.1016/j.ydbio.2003.07.017

    Article  CAS  PubMed  Google Scholar 

  52. Ribone PA, Capella M, Chan RL (2015) Functional characterization of the homeodomain leucine zipper I transcription factor AtHB13 reveals a crucial role in Arabidopsis development. J Exp Bot 66:5929–5943. https://doi.org/10.1093/jxb/erv302

    Article  CAS  PubMed  Google Scholar 

  53. Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM, Kwon CS, Collum RP, Wagner D (2006) The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of cauliflower. Development 133:1673–1682. https://doi.org/10.1242/dev.02331

    Article  CAS  PubMed  Google Scholar 

  54. Son O, Hur YS, Kim YK, Lee HJ, Kim S, Kim MR, Nam KH, Lee MS, Kim BY, Park J, Park J, Lee SC, Hanada A, Yamaguchi S, Lee IJ, Kim SK, Yun DJ, Soderman E, Cheon CI (2010) ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol 51:1537–1547. https://doi.org/10.1093/pcp/pcq108

    Article  CAS  PubMed  Google Scholar 

  55. Cao L, Yu Y, Ding X, Zhu D, Yang F, Liu B, Sun X, Duan X, Yin K, Zhu Y (2017) The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Mol Biol 95:253–268. https://doi.org/10.1007/s11103-017-0643-3

    Article  CAS  PubMed  Google Scholar 

  56. Valdes AE, Overnas E, Johansson H, Rada-Iglesias A, Engstrom P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. https://doi.org/10.1007/s11103-012-9956-4

    Article  CAS  PubMed  Google Scholar 

  57. Cabello JV, Chan RL (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol J 10:815–825. https://doi.org/10.1111/j.1467-7652.2012.00701.x

    Article  CAS  PubMed  Google Scholar 

  58. Johannesson H, Wang Y, Hanson J, Engstrom P (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol 51:719–729. https://doi.org/10.1023/a:1022567625228

    Article  CAS  PubMed  Google Scholar 

  59. Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P (2011) MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 21:1116–1128. https://doi.org/10.1016/j.devcel.2011.10.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32071865), China Agriculture Research System of MOF and MARA (CARS-34) and Agricultural Science and Technology Innovation Program (ASTIP-IAS14). The funding body played no role in the design of the study, the collection, analysis, and interpretation of the data or the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XL and RL conceived and designed the experiments. XL and YH performed the experiments. XL, YH, FZ and FY analyzed the data. XL and RL wrote the original draft. XL, RL, JK, ML, and QY reviewed and edited the manuscript. QY and RL provided financial support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruicai Long.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hou, Y., Zhang, F. et al. Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula. Mol Biol Rep 49, 3569–3581 (2022). https://doi.org/10.1007/s11033-022-07197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07197-4

Keywords

Navigation