Skip to main content
Log in

Next-generation sequencing reveals the mitogenomic heteroplasmy in the topmouth culter (Culter alburnus Basilewsky, 1855)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The mitogenomic heteroplasmy is the presence of multiple haplotypes in the mitochondria, which could cause genetic diseases and is also associated with many critical biological functions. The topmouth culter (Culter alburnus Basilewsky, 1855) is one of the most important freshwater fish in the family of Cyprinidae in China. At present, there are no reports on the topmouth culter's mtDNA heteroplasmy and the existence of which is not known.

Methods and results

This study aimed to analyze the mitogenomic heteroplasmy in the topmouth culter by the next-generation sequencing of the fins' total DNA. The results confirmed the existence of the heteroplasmy and indicated the presence of the extensive heteroplasmy in the topmouth culter's mitogenome. There were 38 heteroplasmic variations in the protein-coding genes from the three specimens, with 33 non-synonymous substitutions accounting for 86.84% and five synonymous substitutions accounting for 13.16%. Among them, the ND6 had the most heteroplasmic variations but only one synonymous substitution. After removing the putative nuclear mitochondrial DNA fragments, the ratio of primary haplotype in the three specimens was 43.89%, 74.72%, and 32.76%, respectively. The three specimens contained 21, 7, and 21 haplotypes of the mitogenomes, respectively. Due to the extensive heteroplasmy, we reconstructed the phylogenetic tree of the topmouth culter using the RY-coding method, which improved the performance of the phylogenetic tree to some extent.

Conclusions

This study reported the mitogenomic heteroplasmy in the topmouth culter and enhanced the knowledge regarding the mitogenomic heteroplasmy in phylogenetic studies. As the topmouth culter is a commercial species, the mitogenomic heteroplasmy is crucial for the fisheries management of the topmouth culter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The genome sequence data supporting this study's findings are openly available in GenBank of NCBI at [https://www.ncbi.nlm.nih.gov] under the accession no. MZ901178, MZ901179, MZ901180, respectively. The associated BioProject number is PRJNA773384.

Code availability

Not applicable.

References

  1. Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301

    Article  CAS  Google Scholar 

  2. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  3. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539

    Article  CAS  Google Scholar 

  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  Google Scholar 

  5. Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542

    Article  CAS  Google Scholar 

  6. Gorkhali NA, Jiang L, Shrestha BS, He XH, Junzhao Q, Han JL, Ma YH (2016) High occurrence of mitochondrial heteroplasmy in nepalese indigenous sheep (Ovis aries) compared to chinese sheep. Mitochondrial DNA A DNA Mapp Seq Anal 27:2645–2647

    CAS  PubMed  Google Scholar 

  7. Gajic B, Stevanovic J, Radulovic Z, Kulisic Z, Vejnovic B, Glavinic U, Stanimirovic Z (2016) Haplotype identification and detection of mitochondrial DNA heteroplasmy in Varroa destructor mites using ARMS and PCR-RFLP methods. Exp Appl Acarol 70:287–297

    Article  CAS  Google Scholar 

  8. Sriboonlert A, Wonnapinij P (2019) Comparative mitochondrial genome analysis of the firefly, Inflata indica (Coleoptera: Lampyridae) and the first evidence of heteroplasmy in fireflies. Int J Biol Macromol 121:671–676

    Article  CAS  Google Scholar 

  9. Huang Y, Lu W, Ji J, Zhang X, Zhang P, Chen W (2019) Heteroplasmy in the complete chicken mitochondrial genome. PLoS One 14:e0224677

  10. Wang W, Zhu H, Hu HX, Tian ZH, Dong Y (2009) Heteroplasmy in mtDNA control region and phylogenetics of five sturgeons. Zool Res 30(5):487–496

    Article  CAS  Google Scholar 

  11. Shi LY, Qi JW, Gao DD, Han J (2018) Species-specific mitochondrial DNA marker, length polymorphism and heteroplasmy in the clam Macridiscus. J Beijing Normal Univ (Natural Science) 54(2):203–207

    Google Scholar 

  12. Pizzirani C, Viola P, Gabbianelli F, Fagotti A, Simoncelli F, Di Rosa I, Salvi P, Amici A, Lucentini L (2020) First evidence of heteroplasmy in Grey Partridge (Perdix perdix). Avian Res. https://doi.org/10.1186/s40657-020-00213-w

    Article  Google Scholar 

  13. Bass MG, Sokolova VA, Kustova ME, Grachyova EV, Kidgotko OV, Sorokin AV, Vasilyev VB (2006) Assaying the probabilities of obtaining maternally inherited heteroplasmy as the basis for modeling OXPHOS diseases in animals. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757:679–685

  14. Lu WW, Hou LL, Zhang WW, Zhang PF, Chen W, Kang X, Huang Y (2016) Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA A DNA Mapp Seq Anal 27:2303–2309

    CAS  PubMed  Google Scholar 

  15. Yang S, Huo Y, Wang H, Ji J, Chen W, Huang Y (2020) The spatio-temporal features of chicken mitochondrial ND2 gene heteroplasmy and the effects of nutrition factors on this gene. Sci Rep 10:2972

    Article  CAS  Google Scholar 

  16. Tang S, Huang T (2010) Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques 48:287–296

    Article  CAS  Google Scholar 

  17. Giuliani C, Barbieri C, Li M, Bucci L, Monti D, Passarino G, Luiselli D, Franceschi C, Stoneking M, Garagnani P (2014) Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra-deep sequencing. Aging (Albany NY) 6:454–467

    Article  Google Scholar 

  18. Rensch T, Villar D, Horvath J, Odom DT, Flicek P (2016) Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data. Genome Biol 17:139

    Article  Google Scholar 

  19. Dierckxsens N, Mardulyn P, Smits G (2020) Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genom Bioinform. https://doi.org/10.1093/nargab/lqz011

    Article  PubMed  Google Scholar 

  20. Froese R, Pauly D (2020) Culter alburnus. FishBase. https://www.fishbase.de/summary/Culter-alburnus.html. Accessed 15 July 2020

  21. Lei YJ, Yun WX, Yang PH, Huang CH, Shao LY (2021) Comparative studies on the flesh quality between wild and cultured Culter albunus. Freshwater Fisheries 51(3):74–81

    Google Scholar 

  22. Green MR, Sambrook J (2018) Isolation of High-Molecular-Weight DNA from Suspension Cultures of Mammalian Cells Using Proteinase K and Phenol. Cold Spring Harb Protoc 2018

  23. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  CAS  Google Scholar 

  24. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  Google Scholar 

  25. Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21:241

    Article  Google Scholar 

  26. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 13:202

    Article  CAS  Google Scholar 

  27. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  Google Scholar 

  28. Okonechnikov K, Golosova O, Fursov M, team U, (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    Article  CAS  Google Scholar 

  29. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  Google Scholar 

  30. Ali RH, Bogusz M, Whelan S (2019) Identifying clusters of high confidence homologies in multiple sequence alignments. Mol Biol Evol 36:2340–2351

    Article  CAS  Google Scholar 

  31. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the Genomic Era. Mol Biol Evol 37:1530–1534

    Article  CAS  Google Scholar 

  32. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  Google Scholar 

  33. Ishikawa SA, Inagaki Y, Hashimoto T (2012) RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity. Evol Bioinform Online 8:357–371

    Article  Google Scholar 

  34. Wetjen M, Cortey M, Vera M, Schmidt T, Schulz R, García-Marín J-L (2017) Occurrence of length polymorphism and heteroplasmy in brown trout. Gene Reports 6:1–7

    Article  Google Scholar 

  35. Kornienko IV, Chebotarev DA, Makhotkin MA, Grigoriev VA, Ponomareva EN, Matishov GG (2019) Termination of replication and mechanisms of heteroplasmy in sturgeon mitochondrial DNA. Mol Biol 53:107–117

    Article  CAS  Google Scholar 

  36. Moreira DA, Buckup PA, Furtado C, Val AL, Schama R, Parente TE (2017) Reducing the information gap on Loricarioidei (Siluriformes) mitochondrial genomics. BMC Genomics 18:345

    Article  Google Scholar 

  37. Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, Attimonelli M (2017) NumtS colonization in mammalian genomes. Scientific Reports 7

  38. Bucking R, Cox MP, Hudjashov G, Saag L, Sudoyo H, Stoneking M (2019) Archaic mitochondrial DNA inserts in modern day nuclear genomes. BMC Genomics 20:1017

    Article  Google Scholar 

  39. Santibanez-Koref M, Griffin H, Turnbull DM, Chinnery PF, Herbert M, Hudson G (2019) Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution. Mitochondrion 46:302–306

    Article  CAS  Google Scholar 

  40. Calvignac S, Konecny L, Malard F, Douady CJ (2011) Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion 11:246–254

    Article  CAS  Google Scholar 

  41. Williams EP, Feng X, Place AR (2017) Extensive heteroplasmy and evidence for fragmentation in the Callinectes sapidus Mitochondrial Genome. J Shellfish Res 36:263–272

    Article  Google Scholar 

  42. Goncalves DJP, Jansen RK, Ruhlman TA, Mandel JR (2020) Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution. Mol Phylogenet Evol 151:106903

    Article  CAS  Google Scholar 

  43. Ricardo PC, Francoso E, Arias MC (2020) Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion 53:243–254

    Article  CAS  Google Scholar 

  44. Shi J, Wang D, Wang J, Sheng J, Peng K, Hu B, Zeng L, Xiao M, Hong Y (2017) Comparative analysis of the complete mitochondrial genomes of three geographical topmouth culter (Culter alburnus) groups and implications for their phylogenetics. Biosci Biotechnol Biochem 81:482–490

    Article  CAS  Google Scholar 

  45. Hu X, Luan P, Cao C, Li C, Jia Z, Ge Y, Shang M, Wang S, Meng Z, Tong J, Shi L (2019) Characterization of the mitochondrial genome of Megalobrama terminalis in the Heilong River and a clearer phylogeny of the genus Megalobrama. Sci Rep 9:8509

    Article  Google Scholar 

Download references

Funding

This work was supported by the Hangzhou Agricultural & Social Development Research Program under Grant 20162012A03; Science & Technology Innovation Program of Hangzhou Academy of Agricultural Sciences under Grant 2019HNCT-01.

Author information

Authors and Affiliations

Authors

Contributions

Kai Liu and Nan Xie conducted the experiments; Kai Liu analyzed the data and wrote the manuscript; Heng-Jia Ma contributed to data analysis and revising the manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

The approval from the Science and Technology Bureau of China and the Department of Wildlife Administration is not required for the experiments conducted in this paper when the fish in question are neither rare nor near extinction (first- or second-class state protection level). According to Measures of Zhejiang Province on Administration of Laboratory Animals, ethical approval was not required because the approval is only necessary when researchers will use mammals.

Consent to participate

The participant has consented to the participants of the manuscript.

Consent for publication

The participant has consented to the submission of the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Xie, N. & Ma, HJ. Next-generation sequencing reveals the mitogenomic heteroplasmy in the topmouth culter (Culter alburnus Basilewsky, 1855). Mol Biol Rep 49, 943–950 (2022). https://doi.org/10.1007/s11033-021-06913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06913-w

Keywords

Navigation