Skip to main content
Log in

Transcriptomics analysis of Daheng broilers reveals that PLIN2 regulates chicken preadipocyte proliferation, differentiation and apoptosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Intramuscular fat content, an important meat quality trait, strongly affects flavor, juiciness, and tenderness. Sex hormones regulate lipid metabolism, and female hormones stimulate fat deposition, thereby making the female chickens always fatter than males. In this study, the effect of sex on IMF deposition was screened following transcriptomics in chickens.

Methods and results

Results confirmed significantly higher IMF content of 150-day female chickens as compared to the male chickens. The female chickens manifested higher serum TG, LDL-C, and VLDL, and significantly lower HDL-C contents than male chickens. Moreover, differential expression of genes involved in lipid metabolism were obtained in the muscle and liver between female and male chicken, which could partly interpret the possible reasons for the sex-mediated differences of IMF content. Cellular results revealed that inhibition of PLIN2 significantly inhibited chicken preadipocyte proliferation and induces apoptosis of preadipocytes, as well as promoted adipocyte differentiation.

Conclusions

According to our results, PLIN2 may be considered as a molecular marker for poultry meat quality and applying this gene in early breed selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation. All the data are available in the SRA database with accession number PRJNA732829.

References

  1. Petracci M, Mudalal S, Soglia F, Cavani C (2015) Meat quality in fast-growing broiler chickens. Worlds Poult Sci J 71(2):363–374

    Article  Google Scholar 

  2. Petracci M, Cavani C (2012) Muscle growth and poultry meat quality issues. Nutrients 4(1):1–12. https://doi.org/10.3390/nu4010001

    Article  PubMed  Google Scholar 

  3. Li J, Yang C, Peng H, Yin H, Wang Y, Hu Y, Yu C, Jiang X, Du H, Li Q, Liu Y (2019) Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat type birds. Animals. https://doi.org/10.3390/ani10010069

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J (2019) Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 20(1):863. https://doi.org/10.1186/s12864-019-6221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW (2010) Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 4(2):303–319. https://doi.org/10.1017/s1751731109991091

    Article  CAS  PubMed  Google Scholar 

  6. Warner RD, Greenwood PL, Pethick DW, Ferguson DM (2010) Genetic and environmental effects on meat quality. Meat Sci 86(1):171–183. https://doi.org/10.1016/j.meatsci.2010.04.042

    Article  CAS  PubMed  Google Scholar 

  7. Zerehdaran S, Vereijken AL, van Arendonk JA, van der Waaijt EH (2004) Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult Sci 83(4):521–525. https://doi.org/10.1093/ps/83.4.521

    Article  CAS  PubMed  Google Scholar 

  8. Gawrieh S (2015) Sex hormones, sex hormone-binding globulin, and liver fat: which came first, the chicken or the egg? Clin Gastroenterol Hepatol 13(9):1694–1696. https://doi.org/10.1016/j.cgh.2015.04.182

    Article  PubMed  Google Scholar 

  9. Chen X, Geng Z, Niu J (2017) Gene expression and plasma lipid content in relation to intramuscular fat in Chinese indigenous Wuhua chicken. J Appl Poult Res 26(3):391–400

    Article  CAS  Google Scholar 

  10. Saez G, Davail S, Gentès G, Hocquette JF, Jourdan T, Degrace P, Baéza E (2009) Gene expression and protein content in relation to intramuscular fat content in Muscovy and Pekin ducks. Poult Sci 88(11):2382–2391. https://doi.org/10.3382/ps.2009-00208

    Article  CAS  PubMed  Google Scholar 

  11. Yin L, Yu L, Zhang L, Ran J, Li J, Yang C, Jiang X, Du H, Hu X, Liu Y (2019) Transcriptome analysis reveals differentially expressed genes and pathways for oviduct development and defense in prelaying and laying hens. Am J Reprod Immunol 82(3):e13159. https://doi.org/10.1111/aji.13159

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Ghaffari N, Johnson CD, Braga-Neto UM, Wang H, Chen R, Zhou H (2011) Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens. BMC Bioinformatics 12(10):S5. https://doi.org/10.1186/1471-2105-12-s10-s5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeong J, Bong J, Kim GD, Joo ST, Lee HJ, Baik M (2013) Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J Anim Sci 91(10):4692–4704. https://doi.org/10.2527/jas.2012-6089

    Article  CAS  PubMed  Google Scholar 

  14. Miao X, Luo Q, Qin X, Guo Y, Zhao H (2015) Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep. Biochem Biophys Res Commun 467(2):413–420. https://doi.org/10.1016/j.bbrc.2015.09.129

    Article  CAS  PubMed  Google Scholar 

  15. Ye M, Zhou B, Wei S, Ding M, Lu X, Shi X, Ding J, Yang S, Wei W (2016) Transcriptomic analysis identifies candidate genes related to intramuscular fat deposition and fatty acid composition in the breast muscle of squabs (Columba). G3 (Bethesda, Md) 6(7):2081–2090. https://doi.org/10.1534/g3.116.029793

    Article  CAS  Google Scholar 

  16. Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M, Estellé J, Ibáñez-Escriche N, Fernández AI, Pérez-Enciso M, Folch JM (2012) Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics 13:547. https://doi.org/10.1186/1471-2164-13-547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi H, Wang Q, Wang Y, Leng L, Zhang Q, Shang Z, Li H (2010) Adipocyte fatty acid-binding protein: an important gene related to lipid metabolism in chicken adipocytes. Comp Biochem Physiol B 157(4):357–363. https://doi.org/10.1016/j.cbpb.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  18. Royan M, Navidshad B (2016) Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken. Worlds Poult Sci J 72(04):773–784

    Article  Google Scholar 

  19. Cui H, Zhao G, Liu R, Zheng M, Chen J, Wen J (2012) FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. J Lipid Res 53(5):909–917

    Article  CAS  Google Scholar 

  20. Cui HX, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J (2012) Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics 13:213. https://doi.org/10.1186/1471-2164-13-213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  Google Scholar 

  22. Zhang M, Li DH, Li F, Sun JW, Jiang RR, Li ZJ, Han RL, Li GX, Liu XJ, Kang XT, Sun GR (2018) Integrated analysis of MiRNA and genes associated with meat quality reveals that Gga-MiR-140-5p affects intramuscular fat deposition in chickens. Cell Physiol Biochem 46(6):2421–2433. https://doi.org/10.1159/000489649

    Article  CAS  PubMed  Google Scholar 

  23. Zhang R, Lin Y, Zhi L, Liao H, Zuo L, Li Z, Xu Y (2017) Expression profiles and associations of adiponectin and adiponectin receptors with intramuscular fat in Tibetan chicken. Br Poult Sci 58(2):151–157. https://doi.org/10.1080/00071668.2016.1268252

    Article  CAS  PubMed  Google Scholar 

  24. Guo-Bin C, Li-Li L, Xue-Yu Z, Ke-Hua W, Guo-Hong C (2010) Development rule of intramuscular fat content in chicken. J Anim Vet Adv 9(2):297–298

    Article  Google Scholar 

  25. Yang Y, Wen J, Fang GY, Li ZR, Liu J (2015) The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J Appl Anim Res 43(2):1–6

    Article  Google Scholar 

  26. Yan J, Liao K, Wang T, Mai K, Xu W, Ai Q (2015) Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS ONE 10(6):e0129937. https://doi.org/10.1371/journal.pone.0129937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leveille GA, Romsos DR, Yeh Y, Ohea EK (1975) Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci 54(4):1075–1093. https://doi.org/10.3382/ps.0541075

    Article  CAS  PubMed  Google Scholar 

  28. Zhuo Z, Lamont SJ, Lee WR, Abasht B (2015) RNA-seq analysis of abdominal fat reveals differences between modern Commercial broiler chickens with high and low feed efficiencies. PLoS ONE 10(8):e0135810. https://doi.org/10.1371/journal.pone.0135810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Wei D, Song Z, Jiao H, Lin H (2012) Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS ONE 7(5):e36663. https://doi.org/10.1371/journal.pone.0036663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dominique H, John CM, Bernard L (1984) Plasma lipoprotein profile in fasted and refed chickens of two strains selected for high or low adiposity. J Nutr 6:1112–1121

    Google Scholar 

  31. Hermier D (1997) Lipoprotein metabolism and fattening in poultry. J Nutr 127(5):805s–808s. https://doi.org/10.1093/jn/127.5.805S

    Article  CAS  PubMed  Google Scholar 

  32. Griffin JD, Lichtenstein AH (2013) Dietary cholesterol and plasma lipoprotein profiles: randomized-controlled trials. Curr Nutr Rep 2(4):274–282. https://doi.org/10.1007/s13668-013-0064-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. PO, VA, EO (2016) Comparative evaluation of cholesterol content and storage quality of chicken and quail eggs. World J Nutr Health 4(1):5–9

    Google Scholar 

  34. Ye Y, Lin S, Mu H, Tang X, Ou Y, Chen J, Ma Y, Li Y (2014) Analysis of differentially expressed genes and signaling pathways related to intramuscular fat deposition in skeletal muscle of sex-linked dwarf chickens. Biomed Res Int 2014:724274. https://doi.org/10.1155/2014/724274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu L, Cui H, Fu R, Zheng M, Liu R, Zhao G, Wen J (2017) The regulation of IMF deposition in pectoralis major of fast- and slow- growing chickens at hatching. J Anim Sci Biotechnol 8:77. https://doi.org/10.1186/s40104-017-0207-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leveille GA, O’Hea EK, Chakbabarty K (1968) In vivo lipogenesis in the domestic chicken. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 128(2):398–401. https://doi.org/10.3181/00379727-128-33022

    Article  CAS  Google Scholar 

  37. Li H, Ma Z, Jia L, Li Y, Xu C, Wang T, Han R, Jiang R, Li Z, Sun G, Kang X, Liu X (2016) Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Sci Rep 6:31766. https://doi.org/10.1038/srep31766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li H, Wang T, Xu C, Wang D, Ren J, Li Y, Tian Y, Wang Y, Jiao Y, Kang X, Liu X (2015) Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. BMC Genomics 16:763. https://doi.org/10.1186/s12864-015-1943-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gan L, Liu Z, Cao W, Zhang Z, Sun C (2015) FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci Rep 5:13588. https://doi.org/10.1038/srep13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Storch J, Thumser AE (2000) The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 1486(1):28–44. https://doi.org/10.1016/s1388-1981(00)00046-9

    Article  CAS  PubMed  Google Scholar 

  41. He J, Tian Y, Li J, Shen J, Tao Z, Fu Y, Niu D, Lu L (2013) Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck. Mol Biol Rep 40(1):189–195. https://doi.org/10.1007/s11033-012-2048-3

    Article  CAS  PubMed  Google Scholar 

  42. Gao GL, Na W, Wang YX, Zhang HF, Li H, Wang QG (2015) Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes. Genet Mol Res 14(2):4847–4857. https://doi.org/10.4238/2015.May.11.17

    Article  CAS  PubMed  Google Scholar 

  43. Lee SY, Nagy BP, Brooks AR, Wang DM, Paulweber B, Levy-Wilson B (1996) Members of the caudal family of homeodomain proteins repress transcription from the human apolipoprotein B promoter in intestinal cells. J Biol Chem 271(2):707–718. https://doi.org/10.1074/jbc.271.2.707

    Article  CAS  PubMed  Google Scholar 

  44. Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR (2009) Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. Mar Biotechnol (NY) 11(5):627–639. https://doi.org/10.1007/s10126-009-9179-0

    Article  CAS  Google Scholar 

  45. Lavoie HA, King SR (2009) Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 234(8):880–907. https://doi.org/10.3181/0903-mr-97

    Article  CAS  Google Scholar 

  46. Widmann P, Nuernberg K, Kuehn C, Weikard R (2011) Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle. BMC Genet 12:96. https://doi.org/10.1186/1471-2156-12-96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cui JX, Zeng YQ, Wang H, Chen W, Du JF, Chen QM, Hu YX, Yang L (2011) The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest Sci 140(1–3):292–296

    Article  Google Scholar 

  48. Qiu F, Xie L, Ma JE, Luo W, Zhang L, Chao Z, Chen S, Nie Q, Lin Z, Zhang X (2017) Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. Front Physiol 8:449. https://doi.org/10.3389/fphys.2017.00449

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brasaemle DL (2007) Thematic review series: adipocyte biology: the perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559. https://doi.org/10.1194/jlr.R700014-JLR200

    Article  CAS  PubMed  Google Scholar 

  50. Bildirici I, Schaiff WT, Chen B, Morizane M, Oh SY, O’Brien M, Sonnenberg-Hirche C, Chu T, Barak Y, Nelson DM, Sadovsky Y (2018) PLIN2 is essential for trophoblastic lipid droplet accumulation and cell survival during hypoxia. Endocrinology 159(12):3937–3949. https://doi.org/10.1210/en.2018-00752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, Shelness GS, Chan L, Chang BH (2017) The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy 13(7):1130–1144. https://doi.org/10.1080/15548627.2017.1319544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dahlhoff M, Camera E, Picardo M, Zouboulis CC, Chan L, Chang BH (1830) Schneider MR (2013) PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo. Biochim Biophys Acta 10:4642–4649. https://doi.org/10.1016/j.bbagen.2013.05.016

    Article  CAS  Google Scholar 

  53. Li S, Raza SHA (2020) Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes. Animals. https://doi.org/10.3390/ani10111944

    Article  PubMed  PubMed Central  Google Scholar 

  54. Raciti GA, Fiory F, Campitelli M, Desiderio A, Spinelli R, Longo M, Nigro C, Pepe G, Sommella E, Campiglia P, Formisano P, Beguinot F, Miele C (2018) Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells. PLoS ONE 13(3):0193704. https://doi.org/10.1371/journal.pone.0193704

    Article  CAS  Google Scholar 

  55. Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50(2):85–90. https://doi.org/10.1080/713803693

    Article  CAS  PubMed  Google Scholar 

  56. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  57. Würstle ML, Laussmann MA, Rehm M (2012) The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res 318(11):1213–1220. https://doi.org/10.1016/j.yexcr.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  58. Chiou SK, Rao L, White E (1994) Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14(4):2556–2563. https://doi.org/10.1128/mcb.14.4.2556

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Sichuan Science and Technology Program (Grant No. 2021YFYZ0031), the Innovation Key Laboratory of Sichuan Province (Grant No. 2017JZ0033) and Key Technology Support Program of Sichuan Province (Grant No. 2018NZDZX0004).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JL and CY; methodology, JL and PR; software, JL and ZL; investigation, JL, CY, DZ and LW; resources, CY and XJ; writing—original draft preparation, JL; writing—review and editing, CY, XJ, PR and YL; supervision, XJ and YL; project administration, YL; funding acquisition, YL and CY All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yiping Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement

The animal study was reviewed and approved by the Ethics Committee for Animal Experiments of Sichuan agricultural university.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, C., Ren, P. et al. Transcriptomics analysis of Daheng broilers reveals that PLIN2 regulates chicken preadipocyte proliferation, differentiation and apoptosis. Mol Biol Rep 48, 7985–7997 (2021). https://doi.org/10.1007/s11033-021-06831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06831-x

Keywords

Navigation