Skip to main content

Advertisement

Log in

Review of the genomic landscape of common pediatric CNS tumors and how data sharing will continue to shape this landscape in the future

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Over the past decade we have witnessed a rapid increase in our understanding of the molecular characteristics of pediatric central nervous system (CNS) tumors. Studies that utilize genomic sequencing have revealed a heterogeneous group of genetic drivers in pediatric CNS tumors including point mutations, gene fusions, and copy number alterations. This manuscript provides an overview of somatic genomic alterations in the most common pediatric CNS tumors including low grade gliomas, high grade gliomas, medulloblastomas, and ependymomas. Additionally, we will discuss the need and opportunity for genomic and clinical data sharing through the children’s brain tumor network and other international initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Collins FS, McKusick VA (2001) Implications of the Human Genome Project for medical science. JAMA 285(5):540–544

    Article  CAS  PubMed  Google Scholar 

  2. Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17(9):507–522

    Article  CAS  PubMed  Google Scholar 

  3. DeWitt JC, Mock A, Louis DN (2017) The 2016 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 30(6):643–649

    Article  PubMed  Google Scholar 

  4. Louis DN et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  5. Louis DN et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251

    Article  PubMed  Google Scholar 

  6. Ater JL et al (2012) Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol 30(21):2641–2647

    Article  PubMed  PubMed Central  Google Scholar 

  7. Margol AS et al (2018) A comparative analysis of clinicopathological features and survival among early adolescents/young adults and children with low-grade glioma: a report from the Children’s Oncology Group. J Neurooncol 140(3):575–582

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6):602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones DT et al (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28(20):2119–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cin H et al (2011) Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 121(6):763–774

    Article  CAS  PubMed  Google Scholar 

  11. Horbinski C (2012) Something old and something new about molecular diagnostics in gliomas. Surg Pathol Clin 5(4):919–939

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lassaletta A et al (2017) Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J Clin Oncol 35(25):2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Bufalo F et al (2018) BRAF V600E Inhibitor (Vemurafenib) for BRAF V600E Mutated Low Grade Gliomas. Front Oncol 8:526

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hargrave DR et al (2019) Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation–positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res 25(24):7303–7311

    Article  CAS  PubMed  Google Scholar 

  15. Maraka S, Janku F (2018) BRAF alterations in primary brain tumors. Discov Med 26(141):51–60

    PubMed  Google Scholar 

  16. Fangusaro J et al (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20(7):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karajannis MA et al (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 16(10):1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sievert AJ et al (2013) Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA 110(15):5957–5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright KD, Fine ZM, Aspri E, Kieran T, Chi MW (2018) S, LGG-26. Type II braf inhibitor TAK-580 shows promise for upcoming clinal trial as evidenced by single patient IND study. Neuro Oncol 20(2):i110

    Article  PubMed Central  Google Scholar 

  20. Johnson A et al (2017) Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 22(12):1478–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helfferich J et al (2016) Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol 104:30–41

    Article  PubMed  Google Scholar 

  22. Mackay A et al (2018) Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial. Cancer Cell 33(5):829–842 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7(3):241–248

    Article  PubMed  Google Scholar 

  24. Mackay A et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520-537 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  26. Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    Article  CAS  PubMed  Google Scholar 

  27. Wisoff JH et al (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89(1):52–59

    Article  CAS  PubMed  Google Scholar 

  28. Cohen KJ et al (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol 13(3):317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams MJ et al (2017) Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma. Front Oncol 7:45

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anastas JN et al (2019) Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell 36(5):528–544 e10

    Article  CAS  PubMed  Google Scholar 

  31. Capdevielle C et al (2020) HDAC inhibition induces expression of scaffolding proteins critical for tumor progression in pediatric glioma: focus on EBP50 and IRSp53. Neuro Oncol 22(4):550–562

    Article  CAS  PubMed  Google Scholar 

  32. Mayr L et al (2020) Cerebrospinal fluid penetration and combination therapy of entrectinib for disseminated ROS1/NTRK-fusion positive pediatric high-grade glioma. J Personal Med 10(4):290

    Article  Google Scholar 

  33. Gambella A et al (2020) NTRK fusions in central nervous system tumors: a rare, but worthy target. Int J Mol Sci 21(3):753

    Article  CAS  PubMed Central  Google Scholar 

  34. Torre M et al (2020) Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun 8(1):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Korshunov A et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678

    Article  CAS  PubMed  Google Scholar 

  36. Souweidane MM et al (2018) Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol 19(8):1040–1050

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cacciotti C et al (2020) Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: a single institution experience. J Neurooncol 149(1):113–122

    Article  CAS  PubMed  Google Scholar 

  38. Guerreiro Stucklin AS et al (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1):4343

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clarke M et al (2020) Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov 10(7):942–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marinoff AE et al (2017) Rethinking childhood ependymoma: a retrospective, multi-center analysis reveals poor long-term overall survival. J Neurooncol 135(1):201–211

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pajtler KW et al (2015) Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell 27(5):728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arabzade A et al (2021) ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discov 11(9):2200–2215

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pajtler KW et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133(1):5–12

    Article  CAS  PubMed  Google Scholar 

  44. Northcott PA et al (2012) Molecular subgroups of medulloblastoma. Expert Rev Neurother 12(7):871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cavalli FMG et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737-754 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar R, Liu APY, Northcott PA (2019) Medulloblastoma genomics in the modern molecular era. Brain Pathol 30(3):679–690

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yeo KK et al (2019) Prognostic significance of molecular subgroups of medulloblastoma in young children receiving irradiation-sparing regimens. J Neurooncol 145(2):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho YJ et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430

    Article  PubMed  Google Scholar 

  49. Ellison DW et al (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121(3):381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ellison DW et al (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29(11):1400–1407

    Article  PubMed  Google Scholar 

  51. Fattet S et al (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218(1):86–94

    Article  CAS  PubMed  Google Scholar 

  52. Aldosari N et al (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126(5):540–544

    Article  PubMed  Google Scholar 

  53. Pfister S et al (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27(10):1627–1636

    Article  PubMed  Google Scholar 

  54. Robinson GW et al (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase ii pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33(24):2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piñeros M et al (2021) Scaling Up the Surveillance of Childhood Cancer: A Global Roadmap. J Natl Cancer Inst 113(1):9–15

    Article  PubMed  Google Scholar 

  56. Ijaz H et al (2019) Pediatric high grade glioma resources from the children’s brain tumor tissue consortium (Cbttc). Neuro Oncol 22(1):163–165

    Article  PubMed Central  Google Scholar 

  57. Capper D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vassal G et al (2014) Challenges for children and adolescents with cancer in Europe: the SIOP-Europe agenda. Pediatr Blood Cancer 61(9):1551–1557

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was used for completion of this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to the design and writing of this manuscript.

Corresponding author

Correspondence to Kristiyana Kaneva.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneva, K., Goldman, S. Review of the genomic landscape of common pediatric CNS tumors and how data sharing will continue to shape this landscape in the future. Mol Biol Rep 48, 7537–7544 (2021). https://doi.org/10.1007/s11033-021-06811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06811-1

Keywords

Navigation