Skip to main content

Advertisement

Log in

The Molecular Landscape of Pediatric Brain Tumors in the Next-Generation Sequencing Era

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Pediatric brain tumors are a leading cause of cancer-related death in children. In recent years, the application of next-generation sequencing and other high-throughput technologies to analysis of pediatric brain tumors has generated an abundance of molecular information. This has provided an unprecedented understanding of their biology and is refining tumor classification into clinically relevant subgroups. In this review, we provide an overview of our evolving molecular knowledge of the commonest pediatric brain tumors, pilocytic astrocytomas, ependymomas, medulloblastomas, and pediatric glioblastomas, as well as the biological and potential clinical implications of this new knowledge. Studies aimed at investigating intratumoral heterogeneity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    PubMed  Google Scholar 

  2. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol. 2013;15 Suppl 2:ii1–ii56.

    Article  PubMed  Google Scholar 

  3. Purdy E, Johnston DL, Bartels U, Fryer C, Carret A-S, Crooks B, et al. Ependymoma in children under the age of 3 years: a report from the Canadian Pediatric Brain Tumour Consortium. J Neurooncol. 2014;117(2):359–64.

    Article  PubMed  Google Scholar 

  4. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461(7265):809–13.

    Article  PubMed  CAS  Google Scholar 

  6. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463(7278):191–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463(7278):184–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408–14. Identification of four medulloblastoma molecular subgroups, which has been decided upon in the current consensus, was first reported in this study.

    Article  PubMed  Google Scholar 

  11. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature. 2010;466(7306):632–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stütz AM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014;506(7489):445–50. This study highlights the role of aberrant epigenetics in posterior fossa ependymomas.

    Article  PubMed  CAS  Google Scholar 

  13. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57.

    Article  PubMed  CAS  Google Scholar 

  14. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P, Liu X-Y, Fontebasso AM, Bouffet E, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Schroeder KM, Hoeman CM, Becher OJ. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 2014;75(1–2):205–9.

    Article  PubMed  CAS  Google Scholar 

  16. Le Scouarnec S, Gribble SM. Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb). 2012;108(1):75–85.

    Article  CAS  Google Scholar 

  17. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013;14(11):765–80.

    Article  PubMed  CAS  Google Scholar 

  18. Louis DN. WHO classification of tumours of the central nervous system. 4th ed. Geneva: World Health Organization; 2007.

    Google Scholar 

  19. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.

    PubMed  CAS  Google Scholar 

  20. Jones DTW, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci. 2012;69(11):1799–811.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Armstrong GT, Conklin HM, Huang S, Srivastava D, Sanford R, Ellison DW, et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol. 2011;13(2):223–34.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz H-J, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32. This study provides a comprehensive view of the genomic aberrations that underlie PAs and converge on upregulation of the MAPK pathway.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008;67(9):878–87.

    PubMed  CAS  Google Scholar 

  25. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  PubMed  CAS  Google Scholar 

  26. Jones DTW, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95(8):625–7.

    Article  PubMed  CAS  Google Scholar 

  28. Michaloglou C, Vredeveld LCW, Mooi WJ, Peeper DS. BRAF(E600) in benign and malignant human tumours. Oncogene. 2008;27(7):877–95.

    Article  PubMed  CAS  Google Scholar 

  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  30. Jones DTW, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28(20):2119–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Patil S, Chamberlain RS. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012;17(1):101–16.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4):851–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lau N, Feldkamp MM, Roncari L, Loehr AH, Shannon P, Gutmann DH, et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol. 2000;59(9):759–67.

    PubMed  CAS  Google Scholar 

  34. Gutmann DH, McLellan MD, Hussain I, Wallis JW, Fulton LL, Fulton RS, et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 2013;23(3):431–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hasselblatt M. Ependymal tumors. Recent Results Cancer Res. 2009;171:51–66.

    Article  PubMed  Google Scholar 

  37. Kilday J-P, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, et al. Pediatric ependymoma: biological perspectives. Mol Cancer Res. 2009;7(6):765–86.

    Article  PubMed  CAS  Google Scholar 

  38. Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol. 2010;28(19):3182–90.

    Article  PubMed  Google Scholar 

  39. Modena P, Buttarelli FR, Miceli R, Piccinin E, Baldi C, Antonelli M, et al. Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neuro Oncol. 2012;14(11):1346–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96(15):8681–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749–59.

    PubMed  CAS  Google Scholar 

  43. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature. 2014;506(7489):451–5.

    Article  PubMed  CAS  Google Scholar 

  45. Edelstein K, Spiegler BJ, Fung S, Panzarella T, Mabbott DJ, Jewitt N, et al. Early aging in adult survivors of childhood medulloblastoma: long-term neurocognitive, functional, and physical outcomes. Neuro Oncol. 2011;13(5):536–45.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Palmer SL. Neurodevelopmental impact on children treated for medulloblastoma: a review and proposed conceptual model. Dev Disabil Res Rev. 2008;14(3):203–10.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813–20.

    Article  PubMed  Google Scholar 

  48. Gottardo NG, Hansford JR, McGlade JP, Alvaro F, Ashley DM, Bailey S, et al. Medulloblastoma down under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol. 2014;127(2):189–201.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Northcott PA, Jones DTW, Kool M, Robinson GW, Gilbertson RJ, Cho Y-J, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer. 2012;12(12):818–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Schroeder K, Gururangan S. Molecular variants and mutations in medulloblastoma. Pharmgenomics Pers Med. 2014;7:43–51.

    PubMed Central  PubMed  Google Scholar 

  51. Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M, et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 2013;125(3):373–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409):106–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488(7409):43–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Jones DTW, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Hovestadt V, Jones DTW, Picelli S, Wang W, Kool M, Northcott PA, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014;510(7506):537–41.

    Article  PubMed  CAS  Google Scholar 

  56. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Northcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488(7409):49–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Hottinger AF, Khakoo Y. Neurooncology of familial cancer syndromes. J Child Neurol. 2009;24(12):1526–35.

    Article  PubMed  Google Scholar 

  59. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839–47.

    Article  PubMed  CAS  Google Scholar 

  60. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, et al. APC mutations in sporadic medulloblastomas. Am J Pathol. 2000;156(2):433–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A. 1995;92(7):3046–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho Y-J, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Northcott PA, Hielscher T, Dubuc A, Mack S, Shih D, Remke M, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 2011;122(2):231–40.

    Article  PubMed  Google Scholar 

  64. Ramaswamy V, Remke M, Bouffet E, Faria CC, Perreault S, Cho Y-J, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200–7.

    Article  PubMed  CAS  Google Scholar 

  65. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJH, Martin DC, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35.

    Article  PubMed  Google Scholar 

  66. Lindsey JC, Schwalbe EC, Potluri S, Bailey S, Williamson D, Clifford SC. TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol. 2014;127(2):307–9.

    Article  PubMed  Google Scholar 

  67. Kool M, Korshunov A, Remke M, Jones DTW, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. MacDonald TJ, Aguilera D, Kramm CM. Treatment of high-grade glioma in children and adolescents. Neuro Oncol. 2011;13(10):1049–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Bettegowda C, Agrawal N, Jiao Y, Wang Y, Wood LD, Rodriguez FJ, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget. 2013;4(4):572–83.

    PubMed Central  PubMed  Google Scholar 

  70. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset P-O, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46:462–6.

    Article  PubMed  CAS  Google Scholar 

  72. Fontebasso AM, Schwartzentruber J, Khuong-Quang D-A, Liu X-Y, Sturm D, Korshunov A, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013;125(5):659–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31. Recurrent somatic mutations in histones in human cancer were first reported in this study.

    Article  PubMed  CAS  Google Scholar 

  74. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.

    Article  PubMed  CAS  Google Scholar 

  75. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013;3(5):512–9.

    Article  CAS  Google Scholar 

  76. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61. This study unveils a gain-of-function mechanism conferred by K27M histone H3 mutations, which can affect global H3 K27 methylation.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Sturm D, Bender S, Jones DTW, Lichter P, Grill J, Becher O, et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer. 2014;14(2):92–107.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    Article  PubMed  CAS  Google Scholar 

  80. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJH, Witt H, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482(7386):529–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  85. Jan M, Majeti R. Clonal evolution of acute leukemia genomes. Oncogene. 2013;32(2):135–40.

    Article  PubMed  CAS  Google Scholar 

  86. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356–61.

    Article  PubMed  CAS  Google Scholar 

  87. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–14.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343(6167):189–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Marlo R. Firme acknowledges the Genome Sciences and Technology program at the University of British Columbia. Marco A. Marra is a University of British Columbia Canada Research Chair in Genome Science and wishes to acknowledge the support of the Canada Research Chairs Program, the Terry Fox Research Institute, and the BC Cancer Foundation. The BC Cancer Agency Genome Sciences Centre gratefully acknowledges funding support from the BC Cancer Foundation, Genome Canada, Genome British Columbia, the Cancer Research Society, and the Leukemia and Lymphoma Society of Canada.

Compliance with Ethics Guidelines

Conflict of Interest

Marlo R. Firme and Marco A. Marra declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Marra.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firme, M.R., Marra, M.A. The Molecular Landscape of Pediatric Brain Tumors in the Next-Generation Sequencing Era. Curr Neurol Neurosci Rep 14, 474 (2014). https://doi.org/10.1007/s11910-014-0474-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0474-4

Keywords

Navigation