Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202–2211. https://doi.org/10.1056/NEJMra0804577
CAS
Article
PubMed
PubMed Central
Google Scholar
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, Perri P, Moura V, Emionite L, Cilli M, De Leonardis F, Tondo A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Moreira JN, Pastorino F (2021) Cell surface nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res 40:180. https://doi.org/10.1186/s13046-021-01993-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078. https://doi.org/10.1038/nrdp.2016.78
Article
PubMed
Google Scholar
Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D (2005) Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11:5146–5152. https://doi.org/10.1158/1078-0432.CCR-05-0352
CAS
Article
PubMed
Google Scholar
Wagner NB, Weide B, Gries M, Reith M, Tarnanidis K, Schuermans V, Kemper C, Kehrel C, Funder A, Lichtenberger R, Sucker A, Herpel E, Holland-Letz T, Schadendorf D, Garbe C, Umansky V, Utikal J, Gebhardt C (2019) Tumor microenvironment-derived S100A8/A9 is a novel prognostic biomarker for advanced melanoma patients and during immunotherapy with anti-PD-1 antibodies. J Immunother Cancer 7:343. https://doi.org/10.1186/s40425-019-0828-1
Aberg AM, Bergstrom SH, Thysell E, Tjon-Kon-Fat LA, Nilsson JA, Widmark A, Thellenberg-Karlsson C, Bergh A, Wikstrom P, Lundholm M (2021) High monocyte count and expression of S100A9 and S100A12 in peripheral blood mononuclear cells are associated with poor outcome in patients with metastatic prostate cancer. Cancers (Basel). https://doi.org/10.3390/cancers13102424
Article
Google Scholar
Tidehag V, Hammarsten P, Egevad L, Granfors T, Stattin P, Leanderson T, Wikstrom P, Josefsson A, Hagglof C, Bergh A (2014) High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur J Cancer 50:1829–1835. https://doi.org/10.1016/j.ejca.2014.03.278
CAS
Article
PubMed
Google Scholar
De Veirman K, De Beule N, Maes K, Menu E, De Bruyne E, De Raeve H, Fostier K, Moreaux J, Kassambara A, Hose D, Heusschen R, Eriksson H, Vanderkerken K, Van Valckenborgh E (2017) Extracellular S100A9 protein in bone marrow supports multiple myeloma survival by stimulating angiogenesis and cytokine secretion. Cancer Immunol Res 5:839–846. https://doi.org/10.1158/2326-6066.CIR-17-0192
CAS
Article
PubMed
Google Scholar
Laouedj M, Tardif MR, Gil L, Raquil MA, Lachhab A, Pelletier M, Tessier PA, Barabe F (2017) S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood 129:1980–1990. https://doi.org/10.1182/blood-2016-09-738005
CAS
Article
PubMed
Google Scholar
Wang T, Du G, Wang D (2021) The S100 protein family in lung cancer. Clin Chim Acta. https://doi.org/10.1016/j.cca.2021.05.028
Article
PubMed
PubMed Central
Google Scholar
Zheng S, Liu L, Xue T, Jing C, Xu X, Wu Y, Wang M, Xie X, Zhang B (2021) Comprehensive analysis of the prognosis and correlations with immune infiltration of S100 protein family members in hepatocellular carcinoma. Front Genet 12:648156. https://doi.org/10.3389/fgene.2021.648156
CAS
Article
PubMed
PubMed Central
Google Scholar
Mondet J, Chevalier S, Mossuz P (2021) Pathogenic roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: clinical and therapeutic impacts. Molecules. https://doi.org/10.3390/molecules26051323
Article
PubMed
PubMed Central
Google Scholar
Liu L, Liu S, Deng P, Liang Y, Xiao R, Tang LQ, Chen J, Chen QY, Guan P, Yan SM, Huang X, Hong JH, Chen J, Sun Y, Teh BT, Yu Q, Mai HQ, Tan J (2021) Targeting the IRAK1-S100A9 axis overcomes resistance to paclitaxel in nasopharyngeal carcinoma. Cancer Res 81:1413–1425. https://doi.org/10.1158/0008-5472.CAN-20-2125
CAS
Article
PubMed
Google Scholar
Seong BK, Fathers KE, Hallett R, Yung CK, Stein LD, Mouaaz S, Kee L, Hawkins CE, Irwin MS, Kaplan DR (2017) A metastatic mouse model identifies genes that regulate neuroblastoma metastasis. Cancer Res 77:696–706. https://doi.org/10.1158/0008-5472.CAN-16-1502
CAS
Article
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
CAS
Article
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211
CAS
Article
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-452. https://doi.org/10.1093/nar/gku1003
CAS
Article
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
CAS
Article
PubMed
PubMed Central
Google Scholar
Cesaro A, Anceriz N, Plante A, Page N, Tardif MR, Tessier PA (2012) An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS ONE 7:e45478. https://doi.org/10.1371/journal.pone.0045478
CAS
Article
PubMed
PubMed Central
Google Scholar
Luu HH, Zhou L, Haydon RC, Deyrup AT, Montag AG, Huo D, Heck R, Heizmann CW, Peabody TD, Simon MA, He TC (2005) Increased expression of S100A6 is associated with decreased metastasis and inhibition of cell migration and anchorage independent growth in human osteosarcoma. Cancer Lett 229:135–148. https://doi.org/10.1016/j.canlet.2005.02.015
CAS
Article
PubMed
Google Scholar
Duan L, Wu R, Zhang X, Wang D, You Y, Zhang Y, Zhou L, Chen W (2018) HBx-induced S100A9 in NF-kappaB dependent manner promotes growth and metastasis of hepatocellular carcinoma cells. Cell Death Dis 9:629. https://doi.org/10.1038/s41419-018-0512-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsubota S, Kadomatsu K (2018) Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. https://doi.org/10.1007/s00441-018-2796-z
Article
PubMed
Google Scholar
Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A, Kim J, Lawrence MS, Lichenstein L, McKenna A, Pedamallu CS, Ramos AH, Shefler E, Sivachenko A, Sougnez C, Stewart C, Ally A, Birol I, Chiu R, Corbett RD, Hirst M, Jackman SD, Kamoh B, Khodabakshi AH, Krzywinski M, Lo A, Moore RA, Mungall KL, Qian J, Tam A, Thiessen N, Zhao Y, Cole KA, Diamond M, Diskin SJ, Mosse YP, Wood AC, Ji L, Sposto R, Badgett T, London WB, Moyer Y, Gastier-Foster JM, Smith MA, Guidry Auvil JM, Gerhard DS, Hogarty MD, Jones SJ, Lander ES, Gabriel SB, Getz G, Seeger RC, Khan J, Marra MA, Meyerson M, Maris JM (2013) The genetic landscape of high-risk neuroblastoma. Nat Genet 45:279–284. https://doi.org/10.1038/ng.2529
CAS
Article
PubMed
PubMed Central
Google Scholar
Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, Kramer A, Roncaioli JL, Sand F, Heuckmann JM, Ikram F, Schmidt R, Ackermann S, Engesser A, Kahlert Y, Vogel W, Altmuller J, Nurnberg P, Thierry-Mieg J, Thierry-Mieg D, Mariappan A, Heynck S, Mariotti E, Henrich KO, Gloeckner C, Bosco G, Leuschner I, Schweiger MR, Savelyeva L, Watkins SC, Shao C, Bell E, Hofer T, Achter V, Lang U, Theissen J, Volland R, Saadati M, Eggert A, de Wilde B, Berthold F, Peng Z, Zhao C, Shi L, Ortmann M, Buttner R, Perner S, Hero B, Schramm A, Schulte JH, Herrmann C, O’Sullivan RJ, Westermann F, Thomas RK, Fischer M (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526:700–704. https://doi.org/10.1038/nature14980
CAS
Article
PubMed
PubMed Central
Google Scholar
Valentijn LJ, Koster J, Zwijnenburg DA, Hasselt NE, van Sluis P, Volckmann R, van Noesel MM, George RE, Tytgat GA, Molenaar JJ, Versteeg R (2015) TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47:1411–1414. https://doi.org/10.1038/ng.3438
CAS
Article
PubMed
Google Scholar
Liu B, Ricarte Filho J, Mallisetty A, Villani C, Kottorou A, Rodgers K, Chen C, Ito T, Holmes K, Gastala N, Valyi-Nagy K, David O, Gaba RC, Ascoli C, Pasquinelli M, Feldman LE, Massad MG, Wang TH, Jusue-Torres I, Benedetti E, Winn RA, Brock MV, Herman JG, Hulbert A (2020) Detection of promoter DNA methylation in urine and plasma aids the detection of non-small cell lung cancer. Clin Cancer Res 26:4339–4348. https://doi.org/10.1158/1078-0432.CCR-19-2896
CAS
Article
PubMed
PubMed Central
Google Scholar
Maekawa H, Ito T, Orita H, Kushida T, Sakurada M, Sato K, Hulbert A, Brock MV (2020) Analysis of the methylation of CpG islands in the CDO1, TAC1 and CHFR genes in pancreatic ductal cancer. Oncol Lett 19:2197–2204. https://doi.org/10.3892/ol.2020.11340
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma Z, Williams M, Cheng YY, Leung WK (2019) Roles of methylated DNA biomarkers in patients with colorectal cancer. Dis Markers 2019:2673543. https://doi.org/10.1155/2019/2673543
CAS
Article
PubMed
PubMed Central
Google Scholar
Kunzmann AT, Murray LJ, Cardwell CR, McShane CM, McMenamin UC, Cantwell MM (2013) PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer Epidemiol Biomarkers Prev 22:1490–1497. https://doi.org/10.1158/1055-9965.EPI-13-0263
CAS
Article
PubMed
Google Scholar
Vene R, Costa D, Augugliaro R, Carlone S, Scabini S, Casoni Pattacini G, Boggio M, Zupo S, Grillo F, Mastracci L, Pitto F, Minghelli S, Ferrari N, Tosetti F, Romairone E, Mingari MC, Poggi A, Benelli R (2020) Evaluation of glycosylated PTGS2 in colorectal cancer for NSAIDS-based adjuvant therapy. Cells. https://doi.org/10.3390/cells9030683
Article
PubMed
PubMed Central
Google Scholar
Shintani T, Higaki M, Okamoto T (2021) Heparin-binding protein 17/Fibroblast growth factor-binding protein-1 knockout inhibits proliferation and induces differentiation of squamous cell carcinoma cells. Cancers (Basel). https://doi.org/10.3390/cancers13112684
Article
Google Scholar
Zhang J, Zhang J, Pang X, Chen Z, Zhang Z, Lei L, Xu H, Wen L, Zhu J, Jiang Y, Cui Y, Chen G, Wang X (2021) MiR-205-5p suppresses angiogenesis in gastric cancer by down regulating the expression of VEGFA and FGF1. Exp Cell Res 404:112579. https://doi.org/10.1016/j.yexcr.2021.112579
CAS
Article
PubMed
Google Scholar
Zhang X, Wang Z, Zeng Z, Shen N, Wang B, Zhang Y, Shen H, Lu W, Wei R, Ma W, Wang C (2021) Bioinformatic analysis identifying FGF1 gene as a new prognostic indicator in clear cell renal cell carcinoma. Cancer Cell Int 21:222. https://doi.org/10.1186/s12935-021-01917-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu R, Duan L, Cui F, Cao J, Xiang Y, Tang Y, Zhou L (2015) S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1/2 and p38 MAPK pathways. Exp Cell Res 334:228–238. https://doi.org/10.1016/j.yexcr.2015.04.008
CAS
Article
PubMed
Google Scholar
Duan L, Wu R, Ye L, Wang H, Yang X, Zhang Y, Chen X, Zuo G, Zhang Y, Weng Y, Luo J, Tang M, Shi Q, He T, Zhou L (2013) S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/beta-catenin pathway. PLoS ONE 8:e62092. https://doi.org/10.1371/journal.pone.0062092
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen KT, Kim PD, Jones KA, Devarajan K, Patel BB, Hoffman JP, Ehya H, Huang M, Watson JC, Tokar JL, Yeung AT (2014) Potential prognostic biomarkers of pancreatic cancer. Pancreas 43:22–27. https://doi.org/10.1097/MPA.0b013e3182a6867e
CAS
Article
PubMed
Google Scholar
Lee JS, Lee NR, Kashif A, Yang SJ, Nam AR, Song IC, Gong SJ, Hong MH, Kim G, Seok PR, Lee MS, Sung KH, Kim IS (2020) S100A8 and S100A9 promote apoptosis of chronic eosinophilic leukemia cells. Front Immunol 11:1258. https://doi.org/10.3389/fimmu.2020.01258
CAS
Article
PubMed
PubMed Central
Google Scholar
Zha H, Li X, Sun H, Duan L, Yuan S, Li H, Li A, Gu Y, Zhao J, Xie J, Zhou L (2019) S100A9 promotes the proliferation and migration of cervical cancer cells by inducing epithelialmesenchymal transition and activating the Wnt/betacatenin pathway. Int J Oncol 55:35–44. https://doi.org/10.3892/ijo.2019.4793
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, Kong F, Jin C, Hu E, Shao Q, Liu J, He D, Xiao X (2019) The expression of S100A8/S100A9 is inducible and regulated by the Hippo/YAP pathway in squamous cell carcinomas. BMC Cancer 19:597. https://doi.org/10.1186/s12885-019-5784-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Schneider RK, Schenone M, Ferreira MV, Kramann R, Joyce CE, Hartigan C, Beier F, Brummendorf TH, Germing U, Platzbecker U, Busche G, Knuchel R, Chen MC, Waters CS, Chen E, Chu LP, Novina CD, Lindsley RC, Carr SA, Ebert BL (2016) Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med 22:288–297. https://doi.org/10.1038/nm.4047
CAS
Article
PubMed
PubMed Central
Google Scholar
Tian Y, Cao R, Che B, Sun D, Tang Y, Jiang L, Bai Q, Liu Y, Morozova-Roche LA, Zhang C (2020) Proinflammatory S100A9 regulates differentiation and aggregation of neural stem cells. ACS Chem Neurosci 11:3549–3556. https://doi.org/10.1021/acschemneuro.0c00365
CAS
Article
PubMed
Google Scholar
Marinkovic G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A (2020) S100A9 links inflammation and repair in myocardial infarction. Circ Res 127:664–676. https://doi.org/10.1161/CIRCRESAHA.120.315865
CAS
Article
PubMed
Google Scholar