Skip to main content
Log in

Comparison of the transcriptomic responses of two Chrysanthemum morifolium cultivars to low light

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Low light is a primary regulator of chrysanthemum growth. Our aim was to analyse the different transcriptomic responses of two Chrysanthemum morifolium cultivars to low light.

Methods and results

We conducted a transcriptomic analysis of leaf samples from the ‘Nannonggongfen’ and ‘Nannongxuefeng’ chrysanthemum cultivars following a 5-day exposure to optimal light (70%, control [CK]) or low-light (20%, LL) conditions. Gene Ontology (GO) classification of upregulated genes revealed these genes to be associated with 11 cellular components, 9 molecular functions, and 15 biological processes, with the majority being localized to the chloroplast, highlighting the role of chloroplast proteins as regulators of shading tolerance. Downregulated genes were associated with 11 cellular components, 8 molecular functions, and 16 biological processes. Heat map analyses suggested that basic helix–loop–helix domain genes and elongation factors were markedly downregulated in ‘Nannongxuefeng’ leaves, consistent with the maintenance of normal stem length, whereas no comparable changes were observed in ‘Nanonggongfen’ leaves. Subsequent qPCR analyses revealed that phytochrome-interacting factors and dormancy-associated genes were significantly upregulated under LL conditions relative to CK conditions, while succinate dehydrogenase 1, elongated hypocotyls 5, and auxin-responsive gene of were significantly downregulated under LL conditions.

Conclusions

These findings suggest that LL plants were significantly lower than those of the CK plants. Low-light tolerant chrysanthemum cultivars may maintain reduced indole-3-acetic acid (IAA) and elongation factor expression as a means of preventing the onset of shade-avoidance symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4

Similar content being viewed by others

Data availability

All data are fully available without restriction.

References

  1. Deng YM, Li CC, Shao QS et al (2012) Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure. Plant Physiol Biochem 55:93–102. https://doi.org/10.1016/j.plaphy.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  2. Zheng L, Labeke MCV (2017) Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. J Plant Physiol 213:66–74. https://doi.org/10.1016/j.jplph.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  3. Parlitz S, Kunze R, Mueller RB, Balazadeh S (2011) Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves. J Plant Physiol 168:1311–1319. https://doi.org/10.1016/j.jplph.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Dutta S, Cruz JA, Imran SM, Chen J, Kramer DM, Osteryoung KW (2017) Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. J Exp Bot 68:3541–3555. https://doi.org/10.1093/jxb/erx203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Xin G, Wei M, Shi Q, Yang F, Wang X (2017) Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci Hortic 225:490–497. https://doi.org/10.1016/j.scienta.2017.07.053

    Article  CAS  Google Scholar 

  6. Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivar under low light. Physiol Plant 132:467–478. https://doi.org/10.1111/j.1399-3054.2007.01036.x

    Article  CAS  PubMed  Google Scholar 

  7. Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S (2012) Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand. J Sci Food Agr 92:1956–1963. https://doi.org/10.1002/jsfa.5568

    Article  CAS  Google Scholar 

  8. Geromel C, Ferreira LP, Davrieux F, Guyot B, Ribeyre F, Scholz MBS, Pereira LFP, Vaast P, Pot D, Leroy T, Filho AA, Vieira LGE, Mazzafera P, Marraccini P (2008) Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol Biochem 46:569–579. https://doi.org/10.1016/j.plaphy.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Hu W, Ma Y, Lv F, Liu J, Zhao W, Chen B, Meng Y, Wang Y, Zhou Z (2016) Effects of late planting and shading on sucrose metabolism in cotton fiber. Environ Exp Bot 131:164–172. https://doi.org/10.1016/j.envexpbot.2016.08.001

    Article  CAS  Google Scholar 

  10. Han S, Jiang JF, Li HY, Song AP, Chen SM, Chen FD (2015). The differential response of two chrysanthemum cultivars to shading: photosynthesis, chloroplast and sieve element-companion cell ultrastructure. Hortscience 50(8):1192–1195. https://doi.org/10.21273/HORTSCI.50.8.1192

  11. Han S, Chen SM, Song AP, Liu RX, Li HY, Jiang JF, Chen FD (2017) Photosynthetic responses of Chrysanthemum morifolium to growth irradiance: morphological, anatomical and chloroplast ultrastructure. Phothosynthica 55(1):184–192. https://doi.org/10.1007/s11099-016-0219-5

    Article  CAS  Google Scholar 

  12. Sasaki K (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genom 18:683

    Article  Google Scholar 

  13. Xu YJ, Gao S, Yang YJ, Huang MY, Cheng L, Wei Q, Fei ZJ, Gao JP, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom 14:1–15

    Article  Google Scholar 

  14. Wang H, Wu GX, Zhao BB, Lang ZH, Zhang CY, Wang HY (2016) Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genom 17:269

    Article  Google Scholar 

  15. Carabelli M, Possenti M, Sessa G, Ruzza V, Morelli G, Ruberti I (2018) Arabidopsis HD-Zip II proteins regulated the exit from proliferation during leaf development in canopy shade. J Exp Bot 9:1–15. https://doi.org/10.1093/jxb/ery331

    Article  CAS  Google Scholar 

  16. Xie YR, Liu Y, Wang H, Ma XJ, Wang BB, Wu GX, Wang HY (2018) Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 8:1–15

    Google Scholar 

  17. Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ (2017) Multiple links between shade avoidance and auxin networks. J Exp Bot 69:213–228. https://doi.org/10.1093/jxb/erx295

    Article  CAS  Google Scholar 

  18. Yang Y, Jiang ZF, Guo JN (2018) Trancriptomic analyses of Chrysanthemum morifolium under UV-B radiation treatment reveal variations in the metabolisms associated with bioactive components. Ind Crop Prod 124:475–486. https://doi.org/10.1016/j.indcrop.2018.08.011

    Article  CAS  Google Scholar 

  19. Lu CF, Pu Y, Liu YT, Li YJ, Qu JP, Huang H, Dai SL (2019) Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum×morifolium. Plant Physiol Biochem 142:415–428. https://doi.org/10.1016/j.plaphy.2019.07.023

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Liu L, Zhao WQ, Guan ZY, Jian JF, Fang WM, Chen FD (2021) A transcriptional response atlas of Chrysanthemum morifolium to dodder invasion. Environ Exp Bot 181:1–14. https://doi.org/10.1016/j.envexpbot.2020.104272

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  22. Dai YJ, Shen ZG, Liu Y, Wang LL, Hannaway D, Lu HF (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65:177–182. https://doi.org/10.1016/j.envexpbot.2008.12.008

    Article  CAS  Google Scholar 

  23. Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LA (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellins and Della proteins in Arabidopsis. Plant Physiol 149:1701–1712. https://doi.org/10.1104/pp.108.133496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu WG, Ren ML, Liu T, Du YL, Zhou T, Liu XM, Liu J, Hussain S, Yang WY (2018) Effects of shade stress on lignin biosynthesis in soybean stems. J Integr Agr 17:1594–1604

    Article  CAS  Google Scholar 

  25. Podolec R, Ulm R (2018) Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol 45:18–25. https://doi.org/10.1016/j.pbi.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  26. Liu WG, Hussain S, Liu T, Zou JL, Ren ML, Zhou T, Liu J, Yang F, Yang WY (2019) Shade stress decreases stem strength of soybean through restraining lignin biosynthesis. J Integr Agr 18:43–53

    Article  Google Scholar 

  27. Tang YJ, Liesche J (2017) The molecular mechanism of shade avoidance in crops-how data from Arabidopsis can help to identify targets for increasing yield and biomass production. J Integr Agr 16:1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-X

    Article  CAS  Google Scholar 

  28. Chaiwanon J, Wang WF, Zhu JY, Oh E, Wang ZY (2016) Information integration and communication in plant growth regulation. Cell 164:1257–1268. https://doi.org/10.1016/j.cell.2016.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li XJ, Chen XJ, Guo X, Yin LL, Ahammed GJ, Xu CJ, Chen KS, Liu CC, Xia XJ, Shi K, Zhou J, Zhou YH, Yu JQ (2016) DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnol J 14:1021–1033. https://doi.org/10.1111/pbi.12474

    Article  CAS  PubMed  Google Scholar 

  30. Stamm P, Kumar P (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903. https://doi.org/10.1093/jxb/erq147

    Article  CAS  PubMed  Google Scholar 

  31. Gangappa SN, Berriri S, Khuma SV (2017) PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr Biol 27(2):243–249. https://doi.org/10.1016/j.cub.2016.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casal JJ (2013) Photoreceptor signaling network in plant responses to shade. Annu Rev Plant Biol 64:403–427. https://doi.org/10.1146/annurev-arplant-050312-120221

    Article  CAS  PubMed  Google Scholar 

  33. Tao Y, Ferrer JL, Ljunf K (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176. https://doi.org/10.1016/j.cell.2008.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27(1):9–19

    Article  CAS  Google Scholar 

  35. Yang C, Xie F, Jiang YP, Li Z, Huang X, Li L (2018) Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Dev Cell 44:29–41. https://doi.org/10.1016/j.devcel.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  36. Moosavi B, Zhu XL, Yang WC, Yang GF (2020) Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol 99(1):1–11. https://doi.org/10.1016/j.ejcb.2019.151057

    Article  CAS  Google Scholar 

  37. Huang S, Taylor NL, Ströher E, Fenske R, Millar AH (2013) Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis. Plant J 73(3):429–441. https://doi.org/10.1111/tpj.12041

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (31902066), Scientific and Technological Projects of Henan Province (182102110241), and the Henan Provincial Natural Science Foundation, China (182300410058). We would like to thank the Nanjing Agricultural University for providing the chrysanthemum materials and the Program for Science & Technology Innovative Research Team in University of Henan Province (21IRTSTHN025).

Author information

Authors and Affiliations

Authors

Contributions

Performed the experiments: SH and QZ; analyzed the data: HW; prepared and wrote the manuscript: SH; conceived and designed the experiment: DP.

Corresponding author

Correspondence to Dongli Pei.

Ethics declarations

Conflict of interest

The authors in this study declared no conflict of any interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Zhang, Q., Wang, H. et al. Comparison of the transcriptomic responses of two Chrysanthemum morifolium cultivars to low light. Mol Biol Rep 48, 7293–7301 (2021). https://doi.org/10.1007/s11033-021-06729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06729-8

Keywords

Navigation