Skip to main content
Log in

MAP30 transgenic tobacco lines: from silencing to inducing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

DNA methylation is one of the most important epigenetic event that regulates gene expression. In addition to DNA methylation, transgene copy number may induce gene silencing. Therefore, the study of these cases is useful for understanding of gene silencing regulation.

Methods and results

In this study, the methylation pattern of 35S promoter was investigated in the second generation of MAP30 transgenic tobacco lines. Therefore, the genomic DNA melting curve changes were investigated before and after bisulfite treatment by real time PCR. To determine the exact position of methylation, the samples were sequenced after bisulfite treatment. Observation of decrease in DNA melting curve of expressing line in comparison with silenced line confirmed the presence of DNA methylation in silenced line. In order to induce the MAP30 expression, the silenced line was treated using different concentrations of Azacytidine and green tea extracts. The results showed that all concentrations of green tea extracts for 6 days and the concentrations of 3 and 10 μM Azacytidine for 10 and 3 days could induce the expression of MAP30 in silenced line respectively. Finally, the transgene copy number was estimated using real time PCR, as silenced line contained more than two copies while the lines expressing MAP30 contained only one or two copies.

Conclusions

Finally, we found that the presence of DNA methylation and also multiple gene copy numbers in silenced line have been led to gene silencing. Moreover, the effect of green tea extract on DNA methylation showed incredible results for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. EF is a housekeeping gene that because of its stable expression in varying conditions was set as reference gene.

  2. virG is a bacterial gene and used for identification of bacterial infection of transgenic plants.

  3. Axi1 gene, involved in auxin action, have a constant number per genome with a linear ΔCt in tobacco plants.

References

  1. Atkinson RG, Bieleski LRF, Gleave AP, Janssen BJ, Morris BAM (1998) Post-transcriptional silencing of chalcone synthase in Petunia using a geminivirus-based episomal vector. Plant J 15(5):593–604. https://doi.org/10.1046/j.1365-313X.1998.00211.x

    Article  CAS  PubMed  Google Scholar 

  2. Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162(2):181–192. https://doi.org/10.1016/S0168-9452(01)00559-3

    Article  CAS  Google Scholar 

  3. Fan J, Liu X, Xu SX, Xu Q, Guo WW (2011) T-DNA direct repeat and 35S promoter methylation affect transgene expression but do not cause silencing in transgenic sweet orange. Plant Cell, Tissue Organ Cult 107(2):225–232. https://doi.org/10.1007/s11240-011-9973-z

    Article  CAS  Google Scholar 

  4. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea Polyphenol (-)-Epigallocatechin-3-Gallate Inhibits DNA Methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Can Res 63(22):7563–7570

    CAS  Google Scholar 

  5. Fojtová M, Bleys A, Bedřichová J, Van Houdt H, Křížová K, Depicker A, Kovařík A (2006) The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 34(8):2280–2293. https://doi.org/10.1093/nar/gkl180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol 227(1):38–44. https://doi.org/10.1111/nph.16529

    Article  CAS  PubMed  Google Scholar 

  7. Gao W, Li S, Li Z, Huang Y, Deng C, Lu L (2014) Detection of genome DNA methylation change in spinach induced by 5-azaC. Mol Cell Probes 28(4):163–166. https://doi.org/10.1016/j.mcp.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15(6):851–864. https://doi.org/10.1007/BF00039425

    Article  CAS  PubMed  Google Scholar 

  9. Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21(1):17–26. https://doi.org/10.1007/BF00039614

    Article  CAS  PubMed  Google Scholar 

  10. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31(1):132–140. https://doi.org/10.2144/01311rr04

    Article  CAS  PubMed  Google Scholar 

  11. John MC, Amasino RM (1989) Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. Mol Cell Biol 9(10):4298–4303. https://doi.org/10.1128/mcb.9.10.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of sense vs antisense constructs and single-copy vs complex T-DNA sequences. Plant Mol Biol 31(5):957–973. https://doi.org/10.1007/BF00040715

    Article  CAS  PubMed  Google Scholar 

  13. Ju Z, Wang L, Cao D, Zuo J, Zhu H, Fu D, Luo Y, Zhu B (2016) A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana. Virus Res 223:99–107. https://doi.org/10.1016/j.virusres.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Khatodia S, Kharb P, Batra P, Chowdhury VK (2014) Real time PCR based detection of transgene copy number in transgenic chickpea lines expressing Cry1Aa3 and Cry1Ac. Int J Pure App Biosci 2(4):100–105

    Google Scholar 

  15. Kiselev KV, Dubrovina AS, Tyunin AP (2015) The methylation status of plant genomic DNA influences PCR efficiency. J Plant Physiol 175:59–67. https://doi.org/10.1016/j.jplph.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  16. Kovavik A, Koukalova B, Holy A, Bezdek M (1994) Sequence-specific hypomethylation of the tobacco genome induced with dihydroxypropyladenine, ethionine and 5-azacytidine. FEBS Lett 353(3):309–311. https://doi.org/10.1016/0014-5793(94)01048-X

    Article  Google Scholar 

  17. Ku, M. S. B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M., & Matsuoka, M. (1999). High-level expression of maize phospho enol pyruvate carboxylase in transgenic rice plants. 17(January).

  18. Li Z, Hansen JL, Liu Y, Zemetra RS, Berger PH (2004) Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Report 22(2):179–188. https://doi.org/10.1007/BF02772725

    Article  CAS  Google Scholar 

  19. Marenkova TV, Loginova DB, Deineko EV (2012) Mosaic patterns of transgene expression in plants. Russ J Genet 48(3):249–260. https://doi.org/10.1134/S1022795412030088

    Article  CAS  Google Scholar 

  20. Moghadam A, Niazi A, Afsharifar A, Taghavi SM (2016) Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE 11(7):1–27. https://doi.org/10.1371/journal.pone.0159653

    Article  CAS  Google Scholar 

  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  22. Okumura A, Shimada A, Yamasaki S, Horino T, Iwata Y, Koizumi N, Nishihara M, Mishiba K, ichiro. (2016) CaMV-35S promoter sequence-specific DNA methylation in lettuce. Plant Cell Rep 35(1):43–51. https://doi.org/10.1007/s00299-015-1865-y

    Article  CAS  PubMed  Google Scholar 

  23. Pan X, Niu G, Liu H (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42(2):129–133. https://doi.org/10.1016/S0255-2701(02)00037-5

    Article  CAS  Google Scholar 

  24. Paszkowski J, Whitham SA (2001) Gene silencing and DNA methylation processes. Curr Opin Plant Biol 4(2):123–129. https://doi.org/10.1016/S1369-5266(00)00147-3

    Article  CAS  PubMed  Google Scholar 

  25. Que Q, Wang HY, English JJ, Jorgensen RA (1997) The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9(8):1357–1368. https://doi.org/10.1105/tpc.9.8.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. MGG Molecular & General Genetics 220(3):441–447. https://doi.org/10.1007/BF00391751

    Article  CAS  Google Scholar 

  27. Slogteren, G. M. S. Van, Schilperoort, R. A., & Group, M. (1984). Activated By Grafting and By 5-Azaeytidine Treatment. 336, 333–336.

  28. Costa, J., Lopes, S., Barros, B., Carneiro, A., & de Sousa, S. M. (2017). Determination of tobacco transgene copy number by real-time quantitative PCR. Simpósio Brasileiro de Genética Molecular de Plantas, 6.

  29. Subr Z, Novakova S, Drahovska H (2006) Detection of transgene copy number by analysis of the T1 generation of tobacco plants with introduced P3 gene of potato virus A. Acta Virol 50(2):135–138

    CAS  PubMed  Google Scholar 

  30. Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58(3):545–554. https://doi.org/10.1093/jxb/erl228

    Article  CAS  PubMed  Google Scholar 

  31. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-99

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan JS, Burris J, Stewart NR, Mentewab A, Neal CN (2007) Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics 8(SUPPL. 7):1–12. https://doi.org/10.1186/1471-2105-8-S7-S6

    Article  CAS  Google Scholar 

  33. Zwergel C, Valente S, Mai A (2015) DNA methyltransferases inhibitors from natural sources. Curr Top Med Chem 16(7):680–696. https://doi.org/10.2174/1568026615666150825141505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Biotechnology and Department of Plant protection for supporting this research in the College of Agriculture (Shiraz University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Niazi or Ali Moghadam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravanrouy, F., Niazi, A., Moghadam, A. et al. MAP30 transgenic tobacco lines: from silencing to inducing. Mol Biol Rep 48, 6719–6728 (2021). https://doi.org/10.1007/s11033-021-06662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06662-w

Keywords

Navigation