Skip to main content
Log in

Effects of insulin on the proliferation and global gene expression profile of A7r5 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Insulin contributes to atherosclerosis, but the potential mechanisms are kept unclear. In this study, insulin promoted proliferation of A7r5 cells. Microarray analysis indicated that insulin significantly changed 812 probe sets of genes, including 405 upregulated and 407 downregulated ones (fold change ≥ 1.5 or ≤ − 1.5; p < 0.05). Gene ontology analysis showed that the differentially expressed genes were involved in a number of processes, including the regulation of cell proliferation/migration/cycle, apoptotic process, oxidative stress, inflammatory response, mitogen-activated protein kinase (MAPK) activity, lipid metabolic process and extracellular matrix organization. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the genes were involved in biosynthesis of amino acids, fatty acid metabolism, glycolysis/gluconeogenesis, metabolic pathways, regulation of autophagy, cell cycle and apoptosis, as well as the PI3K-Akt, MAPK, mTOR and NF-κB signaling pathways. Additionally, insulin enhanced phosphorylation of MAPK kinase 1/2 and Akt, suggesting activation of the MAPK and PI3K-Akt signaling pathways. Inhibition of ERK1/2 reduced insulin-induced proliferation. This study revealed the proliferative effects of insulin and displayed global gene expression profile of A7r5 cells stimulated by insulin, suggesting new insight into the molecular pathogenesis of insulin promoting atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Krempf M, Parhofer KG, Steg PG et al (2010) Cardiovascular event rates in diabetic and nondiabetic individuals with and without established atherothrombosis (from the REduction of Atherothrombosis for Continued Health [REACH] Registry). Am J Cardiol 105:667–671

    Article  PubMed  Google Scholar 

  2. Suzuki LA, Poot M, Gerrity RG et al (2001) Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis: lack of direct growth-promoting effects of high glucose levels. Diabetes 50:851–860

    Article  CAS  PubMed  Google Scholar 

  3. Park SW, Kim SK, Cho YW et al (2009) Insulin resistance and carotid atherosclerosis in patients with type 2 diabetes. Atherosclerosis 205(1):309–313

    Article  CAS  PubMed  Google Scholar 

  4. Stoekenbroek RM, Rensing KL, Bernelot Moens SJ et al (2015) High daily insulin exposure in patients with type 2 diabetes is associated with increased risk of cardiovascular events. Atherosclerosis 240:318–323

    Article  CAS  PubMed  Google Scholar 

  5. Yu C, Wang Z, Han Y et al (2014) Dopamine D4 receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol 13:97

    Article  PubMed  PubMed Central  Google Scholar 

  6. Su XL, Wang Y, Zhang W et al (2011) Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle. J Mol Cell Cardiol 51:51–57

    Article  CAS  PubMed  Google Scholar 

  7. Li F, Xia K, Sheikh MS et al (2014) Retinol binding protein 4 promotes hyperinsulinism-induced proliferation of rat aortic smooth muscle cells. Mol Med Rep 9:1634–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  CAS  PubMed  Google Scholar 

  9. Hosomi N, Noma T, Ohyama H et al (2002) Vascular proliferation and transforming growth factor-beta expression in pre- and early stage of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Atherosclerosis 162:69–76

    Article  CAS  PubMed  Google Scholar 

  10. Li F, Xia K, Sheikh SA et al (2015) Involvement of RBP4 in hyperinsulinism-induced vascular smooth muscle cell proliferation. Endocrine 48:472–482

    Article  CAS  PubMed  Google Scholar 

  11. Min J, Weitian Z, Peng C et al (2016) Correlation between insulin-induced estrogen receptor methylation and atherosclerosis. Cardiovasc Diabetol 15:156

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bennett MR, Anglin S, McEwan JR et al (1994) Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 93:820–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li T, Song T, Ni L et al (2014) The p-ERK-p-c-Jun-cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract. Biochem Biophys Res Commun 453:316–320

    Article  CAS  PubMed  Google Scholar 

  14. Kim MH, Ham O, Lee SY et al (2014) MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J Cell Biochem 115:1752–1761

    Article  CAS  PubMed  Google Scholar 

  15. Jung SM, Park SS, Kim WJ et al (2012) Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. Eur J Pharmacol 681:15–22

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki H, Tanabe H, Mizukami H et al (2011) Differential gene expression in rat vascular smooth muscle cells following treatment with coptisine exerts a selective antiproliferative effect. J Nat Prod 74:634–638

    Article  CAS  PubMed  Google Scholar 

  17. Yan D, Liu X, Hua L et al (2016) MMP-14 promotes VSMC migration via up-regulating CD44 expression in cardiac allograft vasculopathy. Pathol Res Pract 212:1119–1125

    Article  CAS  PubMed  Google Scholar 

  18. Isenovic ER, Fretaud M, Koricanac G et al (2009) Insulin regulation of proliferation involves activation of AKT and ERK 1/2 signaling pathways in vascular smooth muscle cells. Exp Clin Endocrinol Diabetes 117:214–219

    Article  CAS  PubMed  Google Scholar 

  19. Nakazawa T, Chiba T, Kaneko E et al (2005) Insulin signaling in arteries prevents smooth muscle apoptosis. Arterioscler Thromb Vasc Biol 25:760–765

    Article  CAS  PubMed  Google Scholar 

  20. Bhittani MK, Rehman M, Altaf HN et al (2020) Effectiveness of topical insulin dressings in management of diabetic foot ulcers. World J Surg 44:2028–2033

    Article  Google Scholar 

  21. Fritzen AM, Madsen AB, Kleinert M et al (2016) Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. J Physiol 594:745–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei YM, Li X, Xu M et al (2013) Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem 31:925–937

    Article  CAS  PubMed  Google Scholar 

  23. Grootaert MOJ, Moulis M, Roth L et al (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634

    Article  CAS  PubMed  Google Scholar 

  24. Luo Z, Xu W, Ma S et al (2017) Moderate autophagy inhibits vascular smooth muscle cell senescence to stabilize progressed atherosclerotic plaque via the mTORC1/ULK1/ATG13 signal pathway. Oxid Med Cell Longev 2017:3018190

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masuyama A, Mita T, Azuma K et al (2018) Defective autophagy in vascular smooth muscle cells enhances atherosclerotic plaque instability. Biochem Biophys Res Commun 505:1141–1147

    Article  CAS  PubMed  Google Scholar 

  26. Grootaert MO, da Costa Martins PA, Bitsch N et al (2015) Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11:2014–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Montes DK, Brenet M, Muñoz VC et al (2013) Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration. Biochem Biophys Res Commun 441:923–928

    Article  CAS  PubMed  Google Scholar 

  28. Song Z, Wei D, Chen Y et al (2019) Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol Appl Pharmacol 364:45–54

    Article  CAS  PubMed  Google Scholar 

  29. Wu H, Song A, Hu W et al (2018) The anti-atherosclerotic effect of Paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway. Front Pharmacol 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cannizzo B, Lujάn A, Estrella N et al (2012) Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose-fed ApoE-KO mice. Exp Diabetes Res 2012:941304

    Article  PubMed  PubMed Central  Google Scholar 

  31. Antoniades C, Tousoulis D, Marinou K et al (2007) Effects of insulin dependence on inflammatory process, thrombotic mechanisms and endothelial function, in patients with type 2 diabetes mellitus and coronary atherosclerosis. Clin Cardiol 30:295–300

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kappert K, Meyborg H, Clemenz M et al (2008) Insulin facilitates monocyte migration: a possible link to tissue inflammation in insulin-resistance. Biochem Biophys Res Commun 365:503–508

    Article  CAS  PubMed  Google Scholar 

  33. Tsiotra PC, Boutati E, Dimitriadis G et al (2013) High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int 2013:487081

    Article  PubMed  Google Scholar 

  34. Zhang BF, Jiang H, Chen J et al (2018) KDM3A inhibition attenuates high concentration insulin-induced vascular smooth muscle cell injury by suppressing MAPK/NF-κB pathways. Int J Mol Med 41:1265–1274

    CAS  PubMed  Google Scholar 

  35. Yuan T, Yang T, Chen H et al (2019) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 20:247–260

    Article  CAS  PubMed  Google Scholar 

  36. Monnier L, Colette C, Michel F et al (2011) Insulin therapy has a complex relationship with measure of oxidative stress in type 2 diabetes: a case for further study. Diabetes Metab Res Rev 27:348–353

    Article  CAS  PubMed  Google Scholar 

  37. Abhijit S, Bhaskaran R, Narayanasamy A et al (2013) Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 373:95–105

    Article  CAS  PubMed  Google Scholar 

  38. He R, Qu AJ, Mao JM et al (2007) Synergistic proliferation induced by insulin and glycated serum albumin in rat vascular smooth muscle cells. Sheng Li Xue Bao 59:1–7

    PubMed  Google Scholar 

  39. Zeadin MG, Petlura CI, Werstuck GH (2013) Molecular mechanisms linking diabetes to the accelerated development of atherosclerosis. Can J Diabetes 37:345–350

    Article  PubMed  Google Scholar 

  40. Sista AK, O’Connell MK, Hinohara T et al (2005) Increased aortic stiffness in the insulin-resistant Zucker fa/fa rat. Am J Physiol Heart Circ Physiol 289:H845–H851

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz-Torres A, Melón J, Muñoz FJ (1998) Insulin stimulates collagen synthesis in vascular smooth muscle cells from elderly patients. Gerontology 44:144–148

    Article  CAS  PubMed  Google Scholar 

  42. Shi J, Wang A, Sen S et al (2012) Insulin induces production of new elastin in cultures of human aortic smooth muscle cells. Am J Pathol 180:715–726

    Article  CAS  PubMed  Google Scholar 

  43. Bello-Chavolla OY, Antonio-Villa NE, Vargas-Vázquez A et al (2019) Pathophysiological mechanisms linking type 2 diabetes and dementia: review of evidence from clinical, translational and epidemiological research. Curr Diabetes Rev 15:456–470

    Article  CAS  PubMed  Google Scholar 

  44. Song J, Kang SM, Kim E et al (2015) Impairment of insulin receptor substrate 1 signaling by insulin resistance inhibits neurite outgrowth and aggravates neuronal cell death. Neuroscience 301:26–38

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 81460711 and 81760852), the Guangxi National Natural Science Foundation (Nos. 2017GXNSFAA198284 and 2014GXNSFAA118264), the Innovation Project of Guangxi Graduate Education (No. JGY2018084), the Guangxi Key Laboratory of Chinese Medicine Foundation Research (No. 20-065-53), Guangxi University of Chinese Medicine, the Cultivation Program of 1000 Young and Middle-aged Backbone Teachers in Higher Education of Guangxi (No. Gui Teacher Education [2019]81), and the Guangxi Collabrative Innovation Center for Scientific Achievements Transformation and Application on Traditional Chinese Medicine (No. 05020058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotao Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Feng, X. & Huang, X. Effects of insulin on the proliferation and global gene expression profile of A7r5 cells. Mol Biol Rep 48, 1205–1215 (2021). https://doi.org/10.1007/s11033-021-06200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06200-8

Keywords

Navigation