Skip to main content
Log in

Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is one of the major complications of diabetes and involves endothelial dysfunction, matrix alteration, and most importantly migration and proliferation of vascular smooth muscle cells (VSMCs). Although hyperglycemia and hyperinsulinemia are known to contribute to atherosclerosis, little is known about the specific cellular signaling pathways that mediate the detrimental hyperinsulinemic effects in VSMCs. Therefore, we investigated the cellular mechanisms of hyperinsulinemia-induced migration and proliferation of VSMCs. VSMCs were treated with insulin (100 nM) for 6 days and subjected to various physiological and molecular investigations. VSMCs subjected to hyperinsulinemia exhibited increased migration and proliferation, and this is paralleled by oxidative stress [increased NADPH oxidase activity, NADPH oxidase 1 mRNA expression, and reactive oxygen species (ROS) generation], alterations in mitochondrial physiology (membrane depolarization, decreased mitochondrial mass, and increased mitochondrial ROS), changes in mitochondrial biogenesis-related genes (mitofusin 1, mitofusin 2, dynamin-related protein 1, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, peroxisome proliferator-activated receptor gamma coactivator 1-beta, nuclear respiratory factor 1, and uncoupling protein 2), and increased Akt phosphorylation. Diphenyleneiodonium, a known NADPH oxidase inhibitor significantly inhibited migration and proliferation of VSMCs and normalized all the above physiological and molecular perturbations. This study suggests a plausible crosstalk between mitochondrial dysfunction and oxidative stress under hyperinsulinemia and emphasizes counteracting mitochondrial dysfunction and oxidative stress as a novel therapeutic strategy for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NOX1:

NADPH oxidase 1

ROS:

Reactive oxygen species

DPI:

Diphenyleneiodonium

PGC1-α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PGC1-β:

Peroxisome proliferator-activated receptor gamma coactivator 1-beta

UCP-2:

Uncoupling protein 2

Drp1:

Dynamin related protein 1

NRF1:

Nuclear respiratory factor 1

mfn1:

Mitofusin 1

mfn2:

Mitofusin 2

TFAm:

Transcription factor A mitochondrial

References

  1. Wang CC, Gurevich I, Draznin B (2003) Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 52:2562–2569

    Article  PubMed  CAS  Google Scholar 

  2. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed  CAS  Google Scholar 

  3. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20:707–727

    Article  PubMed  CAS  Google Scholar 

  4. Luft R, Landau BR (1995) Mitochondrial medicine. J Intern Med 238:405–421

    Article  PubMed  CAS  Google Scholar 

  5. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140

    Article  PubMed  CAS  Google Scholar 

  6. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  PubMed  CAS  Google Scholar 

  7. Kim JA, Wei Y, Sowers R (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  PubMed  CAS  Google Scholar 

  8. Ballinger SW, Patterson C, Yan CN et al (2000) Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 86:960–966

    Article  PubMed  CAS  Google Scholar 

  9. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  10. Ahn SY, Choi YS, Koo HJ, Jeong JH, Park WH, Kim M, Piao Y, Pak YK (2010) Mitochondrial dysfunction enhances the migration of vascular smooth muscles cells via suppression of Akt phosphorylation. Biochem Biophys Acta 1800:275–281

    Google Scholar 

  11. Seidel CL, Helgason T, Allen JC, Wilson C (1997) Migratory abilities of different vascular cells from the tunica media of canine vessels. Am J Physiol 272:C847–C852

    PubMed  CAS  Google Scholar 

  12. Zhu H, Bannenberg GL, Moldeus P, Shertzer HG (1994) Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol 68:582–587

    Article  PubMed  CAS  Google Scholar 

  13. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA 287:2570–2581

    Article  PubMed  CAS  Google Scholar 

  14. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716

    Article  PubMed  Google Scholar 

  15. Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, Ballinger CA, Brasier AR, Bode C, Runge MS (1999) Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin: evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 274:19814–19822

    Article  PubMed  CAS  Google Scholar 

  16. Madamanchi NR, Moon SK, Hakim ZS, Clark S, Mehrizi A, Patterson C, Runge MS (2005) Differential activation of mitogenic signaling pathways in aortic smooth muscle cells deficient in superoxide dismutase isoforms. Arterioscler Thromb Vasc Biol 25:950–956

    Article  PubMed  CAS  Google Scholar 

  17. Lassegue B, Sorescu D, Szo CSK, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK (2001) Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    Article  PubMed  CAS  Google Scholar 

  18. Ali MI, Ketsawatsomkron P, Belin de Chantemele EJ, Mintz DJ, Muta K, Salet C, Black SM, Tremblay ML, Fulton JD, Marrero BM, Stepp WD (2009) Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone. Circ Res 105:1013–1022

    Article  PubMed  CAS  Google Scholar 

  19. Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299:1255–1257

    Article  Google Scholar 

  20. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 23(580):497–504

    Article  Google Scholar 

  21. Schroder K, Helmcke I, Palfi K, Krause KH, Busse R, Brandes RP (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27:1736–1743

    Article  PubMed  Google Scholar 

  22. Madrigal-Matute J, Fernandez CE, Gomez GC, Franco OL, Munoz BG, Egido J, Miguel BG, Martin JL (2012) HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovasc Res 95:116–123

    Google Scholar 

  23. Youn JY, Gao L, Cai H (2012) The p47(phox) and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55:2069–2079

    Google Scholar 

  24. Jagadeesha DK, Takapoo M, Banfi B, Bhalla RC, Miller FJ Jr (2012) Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration. Cardiovasc Res 93:406–413

    Article  PubMed  CAS  Google Scholar 

  25. Zimmerman MC, Takapoo M, Jagadeesha DK, Stanic B, Banti B, Bhalla CB, Miller F (2011) Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells. Hypertension 58:446–453

    Article  PubMed  CAS  Google Scholar 

  26. Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HH (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69:2327–2343

    Article  PubMed  Google Scholar 

  27. Lee SB, Bae IH, Bae YS, Um H (2006) Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem 281:36228–36335

    Article  PubMed  CAS  Google Scholar 

  28. Wosniak JJ, Santos CX, Kowaltowski AJ, Laurindo F (2009) Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal 11:1265–1278

    Article  PubMed  CAS  Google Scholar 

  29. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599

    Article  PubMed  CAS  Google Scholar 

  30. Szendroedi J, Schmid AI, Meyerspeer M, Cervin C, Kacerovsky M, Smekal G, Gräser-Lang S, Groop L, Roden M (2009) Impaired mitochondrial function and insulin resistance of skeletal muscle in mitochondrial diabetes. Diabetes Care 32:677–679

    Article  PubMed  CAS  Google Scholar 

  31. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354

    Article  PubMed  CAS  Google Scholar 

  32. Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential and Drp1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898

    Article  PubMed  CAS  Google Scholar 

  33. Mijaljica D, Prescott M, Devenish RJ (2007) Different fates of mitochondria: alternative ways for degradation? Autophagy 3:4–9

    PubMed  CAS  Google Scholar 

  34. Smirnova E, Shurland DL, Ryazantsev SN, Van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

    Article  PubMed  CAS  Google Scholar 

  35. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  Google Scholar 

  36. Vianna CR, Huntgeburth M, Coppari R (2006) Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metabol 4:453–464

    Article  CAS  Google Scholar 

  37. Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, Wu TC, Lane MD, Diehl AM (1999) Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem 274:5692–5700

    Article  PubMed  CAS  Google Scholar 

  38. Pansuria M, Xi H, Li L, Yang XF, Wang H (2012) Insulin resistance, metabolic stress, and atherosclerosis. Front Biosci 4:916–931

    Article  Google Scholar 

  39. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II mediated mitochondria dysfunction. linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    Article  PubMed  CAS  Google Scholar 

  40. Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL (2012) Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J 26:2351–2362

    Article  PubMed  CAS  Google Scholar 

  41. Laurent C, Chabi B, Fouret G, Py G, Sairafi B, Elong C, Gaillet S, Cristol JP, Coudray C, Feillet-Coudray C (2012) Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats. Free Radic Res 46:1140–1149

    Article  PubMed  CAS  Google Scholar 

  42. Liu G, Hitomi H, Hosomi N (2001) Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor. Exp Cell Res 317:2420–2428

    Article  Google Scholar 

  43. Lahair MM, Howe CJ, Rodriguez-Mora O, McCubrey JA, Franklin RA (2006) Molecular pathways leading to oxidative stress-induced phosphorylation of Akt. Antioxid Redox Signal 8:1749–1756

    Article  PubMed  CAS  Google Scholar 

  44. Kwintkiewicz J, Robert ZS, Nastaran F, Tugce P, Antoni JD (2006) Oxidative stress modulate proliferation of rat ovarian theca-interstitial cells through diverse signal transduction pathways. Biol Reprod 374:1034–1040

    Article  Google Scholar 

  45. Pasciu V, Posadino AM, Cossu A, Sanna B, Tadolini B, Gaspa L, Marchisio A, Dessole S, Capobianco G, Pintus G (2010) Akt downregulation by flavin oxidase-induced ROS generation mediates dose-dependent endothelial cell damage elicited by natural antioxidants. Toxicol Sci 114:101–112

    Article  PubMed  CAS  Google Scholar 

  46. Song YS, Narasimhan P, Kim GS, Jung JE, Park EH, Chan PH (2008) The role of Akt signaling in oxidative stress mediates NF-kappaB activation in mild transient focal cerebral ischemia. J Cereb Blood Flow Metab 28:1917–1926

    Article  PubMed  CAS  Google Scholar 

  47. Su XL, Wang Y, Zhang W, Zhao LM, Li GR, Deng XL (2011) Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle. J Mol Cell Cardiol 51:51–57

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Wang Y, Wang X, Zhang Y, Eisner GM, Asico LD, Jose PA, Zeng C (2011) Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens 29:1560–1568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Department of Biotechnology (DBT), Government of India for the financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuswamy Balasubramanyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abhijit, S., Bhaskaran, R., Narayanasamy, A. et al. Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 373, 95–105 (2013). https://doi.org/10.1007/s11010-012-1478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1478-5

Keywords

Navigation