Skip to main content
Log in

Selection of suitable reference genes for quantitative real time PCR in different Tulasnella isolates and orchid-fungus symbiotic germination system

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Under natural conditions, mycorrhizal symbiosis accompanies nearly the entire life cycle of orchids from seed germination through to flowering and fruiting. Tulasnella-like orchid mycorrhizal fungi are the most common mycorrhizal fungi found in association with orchid species. Presently suitable reference genes have not been systematically selected for the quantification of gene expression via Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). We evaluated 12 candidate Tulasnella genes in nine different Tulasnella isolates and in the Dendrobium-fungal symbiotic germination associations followed by statistical analysis using the programs Bestkeeper, geNorm, and Normfinder to analyze the expression stability of the individual genes. The results showed that the EF2, UBC, and PP2A genes had the highest rankings with relatively stable expression levels across the different genotypes and during the symbiotic seed germination process by the three programs, and may be suitable for RT-qPCR normalization. Furthermore, the gene encoding C-5 Sterol desaturase (C5SD) was selected to verify the reliability of EF2, UBC, and PP2A expression during the Tulasnella-Dendrobium symbiotic seed germination process. This study is the first systematic exploration of optimal reference genes for gene expression studies during the colonization of orchid seeds by the mycorrhizal fungus Tulasnella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139

    Article  Google Scholar 

  2. Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  3. Smith SE, Read DJ (2000) Mycorrhizal symbiosis, 3rd edn. Academic Press Inc, New York

    Google Scholar 

  4. Rasmussen HN (1995) Terrestrial orchids:from seed to myco-trophic plant. Cambridge University Press, Cambridge, pp 1–444

    Book  Google Scholar 

  5. Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21(20):5098–5109

    Article  PubMed  Google Scholar 

  6. Gao Y, Guo SX, Xing XK (2019) Fungal diversity and mechanisms of symbiotic germination of orchid seeds: a review. Mycosystema 38(11):1808–1825

    Google Scholar 

  7. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Expt Bot 60:487–493

    Article  Google Scholar 

  8. Che JX, Shi JL, Yao Lu, Liu YL (2016) Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1). AMB Expr 6:106

    Article  Google Scholar 

  9. Sun ZB, Li SD, Sun MH (2015) Selection of reliable reference genes for gene expression studies in Clonostachys rosea 67–1 under sclerotial induction. J Microbiol Methods 114:62–65

    Article  CAS  PubMed  Google Scholar 

  10. Song L, Li T, Fan L, Shen XY, Hou CL (2015) Identification and evaluation of reliable reference genes in the medicinal fungus Shiraia bambusicola. Curr Microbiol 72(4):444–449

    Article  PubMed  Google Scholar 

  11. Nadai C, Campanaro S, Giacomini A, Coric V (2015) Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Int J Food Microbiol 215:49–56

    Article  CAS  PubMed  Google Scholar 

  12. Llanos A, François JM, Parrou JL (2015) Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genom 16:71

    Article  Google Scholar 

  13. Zhou YH, Zhang YJ, Luo ZB, Fan YH, Tang GR, Liu LJ, Pei Y (2012) Selection of optimal reference genes for expression analysis in the entomopathogenic fungus Beauveria bassiana during development, under changing nutrient conditions, and after exposure to abiotic stresses. Appl Microbiol Biotechnol 93(2):679–685

    Article  CAS  PubMed  Google Scholar 

  14. Chen C, Xie T, Ye S, Jensen AB, Eilenberg J (2016) Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis. Braz J Microbiol 47(1):259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng H, Gao R, Liao X, Cai Y (2016) Reference genes selection and relative expression analysis from Shiraia sp. SUPER-H168 productive of hypocrellin. Gene 580:67–72

    Article  CAS  PubMed  Google Scholar 

  16. Lyu Y, Wu X, Ren H, Zhou F, Hi Z, Zhang X, Yang H (2017) Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress. J Microbiol Methods 141:28–31

    Article  CAS  PubMed  Google Scholar 

  17. Baez-Flores ME, Troncoso-Rojas R, Osuna MAI, Dominguez MR, Pryor B, Tiznado-Hernandez ME (2011) Differentially expressed cDNAs in Alternaria alternata treated with 2-propenyl isothiocyanate. Microbiol Res 166(7):566–577

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes C, Anjos J, Walker LA, Silva BMA, Cortes L, Mota M, Munro CA, Gow NAR, Goncalves T (2014) Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob Agents Chemother 58(5):2894–2904

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sellam A, Poupard P, Simoneau P (2006) Molecular cloning of AbGst1 encoding a glutathione transferase differentially expressed during exposure of Alternaria brassicicola to isothiocyanates. FEMS Microbiol Lett 258(2):241–249

    Article  CAS  PubMed  Google Scholar 

  20. Cho Y, Ohm RA, Devappa R, Lee HB, Grigoriev IV, Kim BY, Ahn JS (2014) Transcriptional responses of the Bdtf1-deletion mutant to the phytoalexin brassinin in the necrotrophic fungus Alternaria brassicicola. Molecules 19(8):10717–10732

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper-excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):12

    Article  Google Scholar 

  23. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  24. Xu L, Tian J, Wang T, Li L (2017) Symbiosis established between orchid and Tulasnella spp. fungi. J Nucl Agric Sci 31(5):876–883

    Google Scholar 

  25. Chen J, Wang H, Liu SS, Li YY, Guo SX (2014) Ultrastructure of symbiotic germination of the orchid Dendrobium officinale with its mycobiont Sebacina sp. Aust J Bot 62(3):229–234

    Article  Google Scholar 

  26. Zhao X, Yang J, Liu S, Chen C, Zhu H, Cao J (2014) The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World J Microbiol Biotech 30:1993–2003

    Article  CAS  Google Scholar 

  27. Wang T, Hao R, Pan H, Cheng T, Zhang Q (2014) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions. J Am Soc Hortic Sci 139(2):113–122

    Article  CAS  Google Scholar 

  28. Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213:365–379

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Song Z, Wang XJ, Xu LJ, Sun QW, Li LB (2018) Functional insights into the roles of hormones in the Dendrobium officinale-Tulasnella sp. germinated seed symbiotic association. Int J Mol Sci 19:3484

    Article  PubMed Central  Google Scholar 

  30. Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Plant Signal Behav 9(11):e977707

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84

    Article  CAS  Google Scholar 

  32. Zhang Y, Li YY, Chen XM, Guo SX (2019) Morphological observation on the symbiotic germination of Dendrobium officinale seeds. J Cap Norm Univ 40(5):35–42

    Google Scholar 

  33. Nes WR (1988) Dhanuka IC () Inhibition of sterol synthesis by delta 5-sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P450. J Biol Chem 263:11844–11850

    Article  CAS  PubMed  Google Scholar 

  34. Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post squalene portion of the yeast ergosterol pathway. FEBS Lett 392:161–165

    Article  CAS  PubMed  Google Scholar 

  35. Singh R, Green MR (1993) Sequence-specifc binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259(5093):365–368

    Article  CAS  PubMed  Google Scholar 

  36. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66(3):928–935

    Article  CAS  PubMed  Google Scholar 

  37. Song Y, Wang Y, Guo DD, Jing L (2019) Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. BMC Plant Biol 19:20

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pathan EK, Ghormade V, Deshpande MV (2017) Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii. PLoS ONE 12(6):e0179454

    Article  PubMed  PubMed Central  Google Scholar 

  39. da Silva MF, Gonçalves MC, dos Santos BM, Nóbile PM, de Andrad LM, Medeiros CN, Creste S, Pinto LR (2019) Reference genes for gene expression studies targeting sugarcane infected with sugarcane mosaic virus (SCMV). BMC Res Notes 12:149

    Article  PubMed  PubMed Central  Google Scholar 

  40. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Obrero A, Die JV, Román B, Gomez P, Nadal S, González-Verdejo CI (2011) Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agr Food Chem 59:5402–5411

    Article  CAS  Google Scholar 

  42. Artico S, Nardeli S, Brilhante O, Grossi-de-Sa M, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  43. Die JV, Román B, Nadal S, González-Verdejo CI (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145–153

    Article  CAS  PubMed  Google Scholar 

  44. Klie M, Debener T (2011) Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Res Notes 4:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamthan A, Kamthan M, Datta A (2017) Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance. PLoS ONE 12(3):e0173381

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (No. 31700547), and the Beijing Botanical Garden (No. BZ201901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Yao.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2020_6085_MOESM1_ESM.pdf

Supplementary file1 (PDF 649 KB) Fig S1. Melting curves of 12 candidate reference genes and a C5SD gene exhibiting only single peaks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Cao, X., Wang, X. et al. Selection of suitable reference genes for quantitative real time PCR in different Tulasnella isolates and orchid-fungus symbiotic germination system. Mol Biol Rep 48, 527–538 (2021). https://doi.org/10.1007/s11033-020-06085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06085-z

Keywords

Navigation