Skip to main content
Log in

Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant microRNAs have shown the capacity to regulate mammalian systems. The potential bioactivity of miR171vr, an isoform of the plant miR171, on human embryonic kidney 293 (HEK293) cells was investigated. Bioinformatics simulations revealed that human G protein subunit alpha 12 (GNA12) transcript could represent an excellent target for miR171vr. To confirm this prediction, in vitro experiments were performed using a synthetic microRNA designed on miR171vr sequence. MiR-treated cells showed a significant decrease of GNA12 mRNA and protein levels, confirming the putative cross-kingdom interaction. In addition, miR171vr determined the modulation of GNA12 downstream signaling factors, including mTOR, as expected. Finally, the effect of the plant miRNA on HEK293 cell growth and its stability in presence of several stressors, such as those miming digestive processes and procedures for preparing food, were evaluated. All this preliminary evidence would suggest that miR171vr, introduced by diet or as supplement in gene therapies, could potentially influence human gene expression, especially for treating disorders where GNA12 is over-expressed (i.e. oral cancer, breast and prostate adenocarcinoma) or mTOR kinase is down-regulated (e.g. obesity, type 2 diabetes, neurodegeneration).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNAs, miRs:

MicroRNAs

RISC:

RNA-induced silencing complex

AGOs:

Argonaute proteins

miR171:

MiRNA171

HEK293:

Human embryonic kidney 293 cells

miR171v:

MiR171 variant

UPE:

Max target accessibility-maximum energy to unpair the target site

HSP:

Length for complementarity scoring

GNA12:

Homo sapiens G protein subunit alpha 12

DMEM:

Dulbecco’s modified Eagle Medium

STR:

Starvation

MTT:

3-(4,5-Dimethyl-thiazol- 2-yl)-2,5-diphenyltetrazolium bromide

CNT:

Control

CNT SCR:

Different concentrations of synthetic miR171vr (1, 10 and 100 nM), or scrambled miRNA

PI3K:

P80-phosphatidylinositol 3-kinase

Akt:

Protein kinase B, both total and phosphorylated form

mTOR:

Mammalian target of rapamycin, both total and phosphorylated form

S6K:

P70-ribisomal protein S6 kinase, directly activated by mTOR

PP242:

ATP‑competitive inhibitor of mTOR

RASA2:

Ras GTPase-activating protein 2

HRas:

Harvey Ras

mTORC1 and mTORC2:

MTOR complexes

RhoGEF:

Ras homolog gene family guanine nucleotide exchange factor 12

RhoA:

Ras homolog gene family member A

ROCK:

Rho-associated coiled-coil containing protein kinase

PTEN:

Phosphatase and tensin homolog protein

References

  1. MacFarlane LA, Murphy P (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genom 11:537–561. https://doi.org/10.2174/138920210793175895

    Article  CAS  Google Scholar 

  2. Zhang B, Pan X, Cobb G, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16. https://doi.org/10.1016/j.ydbio.2005.10.036

    Article  CAS  PubMed  Google Scholar 

  3. Kang S, Choi JW, Lee Y, Hong SH, Lee H (2013) Identification of microRNA-size, small RNAs in Escherichia coli. Curr Microbiol 67:609–613. https://doi.org/10.1007/s00284-013-0411-9

    Article  CAS  PubMed  Google Scholar 

  4. Baroni D, Arrigo P (2014) MicroRNA target and gene validation in viruses and bacteria. miRNomics: MicroRNA biology and computational analysis. Humana Press, Totowa, pp 223–231

    Chapter  Google Scholar 

  5. Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bionf 9:183–199. https://doi.org/10.1016/S1672-0229(11)60022-3

    Article  CAS  Google Scholar 

  6. Place RF, Li L, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. PNAS 105:1608–1613. https://doi.org/10.1073/pnas.0707594105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valinezhad-Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genom. https://doi.org/10.1155/2014/970607

    Article  Google Scholar 

  8. Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Mol Life Sci 72:87–99. https://doi.org/10.1007/s00018-014-1728-7

    Article  CAS  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  10. Sala-Cirtog M, Marian C, Anghel A (2015) New insights of medicinal plant therapeutic activity—the miRNA transfer. Biomed Pharmacother 74:228–232. https://doi.org/10.1016/j.biopha.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  11. Philip A, Ferro VA, Tate RJ (2015) Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr food Res 59:1962–1972. https://doi.org/10.1002/mnfr.201500137

    Article  CAS  PubMed  Google Scholar 

  12. Fabris L, Calin GA (2016) Circulating free xeno-microRNAs–The new kids on the block. Mol Oncol 10:503–508. https://doi.org/10.1016/j.molonc.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie W, Weng A, Melzig MF (2016) MicroRNAs as new bioactive components in medicinal plants. Planta Med 82:1153–1162. https://doi.org/10.1055/s-0042-108450

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Li Y, Liu Y, Liu H, Wang H, Jin W, Zhang Y, Zhang J, Xu D (2016) Role of plant microRNA in cross-species regulatory networks of humans. BMC Syst Biol 10:60. https://doi.org/10.1186/s12918-016-0292-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YF, Wang WJ, Chen YL, He ZH, Cao JJ, Yang ZM, Gong MJ, Yin YQ (2018) Extraction and verification of miRNA from ginseng decoction. Chin Herb Med 10:318–322. https://doi.org/10.1007/s13562-020-00613-5

    Article  CAS  Google Scholar 

  16. Xie W, Melzig MF (2018) The stability of medicinal plant microRNAs in the herb preparation process. Molecules 23:919. https://doi.org/10.3390/molecules23040919

    Article  CAS  PubMed Central  Google Scholar 

  17. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495. https://doi.org/10.1161/CIRCRESAHA.111.247452

    Article  CAS  PubMed  Google Scholar 

  18. Köberle V, Tijsen AJ, Pinto YM (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS ONE. https://doi.org/10.1371/journal.pone.0075184

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Zen K, Zhang CY (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126. https://doi.org/10.1038/cr.2011.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, Wilmes P, Galas D (2012) The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS ONE 7:e51009. https://doi.org/10.1371/journal.pone.0051009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lukasik A, Zielenkiewicz P (2017) Plant microRNAs-Novel players in natural medicine? J Mol Sci 18:9. https://doi.org/10.3390/ijms18010009

    Article  CAS  Google Scholar 

  22. Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A, Muleo R, Colizzi V, Montesano C (2018) Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 8:12413. https://doi.org/10.1038/s41598-018-30718-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacovelli F, Faraonio R, Di Marco G, Poerio N, Minutolo A, Minopoli G, Marcone A, Fraziano M, Tortolici F, Sennato S, Casciardi S, Potestà M, Bernardini R, Mattei M, Falconi M, Montesano C, Rufini S, Canini A, Lettieri-Barbato D (2019) Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Commun Biol 2:317. https://doi.org/10.1038/s42003-019-0563-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gismondi A, Di Marco G, Canini A (2017) Detection of plant microRNAs in honey. PLoS ONE 12:2. https://doi.org/10.1371/journal.pone.0172981

    Article  CAS  Google Scholar 

  25. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. https://doi.org/10.1093/nar/gkj112

    Article  CAS  PubMed  Google Scholar 

  26. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  27. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  28. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkr319.10.1093/nar/gkr319

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121. https://doi.org/10.1093/bib/bbq065

    Article  CAS  PubMed  Google Scholar 

  30. Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 46:W49–W54. https://doi.org/10.1093/nar/gky316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mutlu M, Saatci Ö, Ansari A, Yurdusev E, Shehwana H, Konu Ö, Raza U, Şahin Ö (2016) miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep 6:32541. https://doi.org/10.1038/srep32541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gismondi A, Nanni V, Reina G, Orlanducci S, Terranova ML, Canini A (2016) Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization. Int J Nanomed. 11:557. https://doi.org/10.2147/IJN.S96614

    Article  CAS  Google Scholar 

  33. Yoshida S, Matsumoto K, Arao T, Taniguchi H, Goto I, Hanafusa T, Nishio K, Yamada Y (2013) Gene amplification of ribosomal protein S6 kinase-1 and-2 in gastric cancer. Anticancer Res 33:469–475

    CAS  PubMed  Google Scholar 

  34. Wee LH, Morad NA, Aan GJ, Makpol S, Ngah WZW, Yusof YAM (2015) Mechanism of chemoprevention against colon cancer cells using combined Gelam honey and ginger extract via mTOR and Wnt/β-catenin pathways. Asian Pac J Cancer P 16:6549–6556. https://doi.org/10.7314/apjcp.2015.16.15.6549

    Article  Google Scholar 

  35. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP, Thomas G (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11:501. https://doi.org/10.1038/ncb1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geng R, Wang L, Chang H, Ji D (2012) Molecular evolution of miR-31 gene family and prediction of their target genes. J Anhui Agric Univ 27:814–819

    CAS  Google Scholar 

  37. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190. https://doi.org/10.1126/science.1159151

    Article  CAS  PubMed  Google Scholar 

  38. Caron RW, Kozikowski AP, Dennis FP, Hagan MP, Grant S, Dent P, Dennis PA (2005) Activated forms of H-RAS and K-RAS differentially regulate membrane association of PI3K, PDK-1, and AKT and the effect of therapeutic kinase inhibitors on cell survival. Mol Cancer Ther 4:257–270

    CAS  PubMed  Google Scholar 

  39. Espada J, Galaz S, Sanz-Rodríguez F, Blázquez-Castro A, Stockert JC, Bagazgoitia L, Jaén P, González S, Cano A, Juarranz A, Juarranz Á (2009) Oncogenic H-Ras and PI3K signaling can inhibit E-cadherin-dependent apoptosis and promote cell survival after photodynamic therapy in mouse keratinocytes. J Cell Physiol 219:84–93. https://doi.org/10.1002/jcp.21652

    Article  CAS  PubMed  Google Scholar 

  40. Siehler S (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Brit J Pharmacol 158:41–49. https://doi.org/10.1111/j.1476-5381.2009.00121.x

    Article  CAS  Google Scholar 

  41. Tonges L, Koch J, Bahr M, Lingor P (2011) ROCKing regeneration: Rho Kinase inhibition as molecular target for neurorestoration. Front Mol Neurosci 4:39. https://doi.org/10.3389/fnmol.2011.00039

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li G, Liu L, Shan C, Chen Q, Budhraja A, Zhou T, Cui H, Gao N (2014) RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo. Cell Death Dis 5:e998. https://doi.org/10.1038/cddis.2013.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ (2015) Structure, function, pharmacology and therapeutic potential of the G protein, Ga/q, 11. Front Cardiovasc Med 2:1–11. https://doi.org/10.3389/fcvm.2015.00014

    Article  CAS  Google Scholar 

  44. Arafeh R, Qutob N, Emmanuel R, Keren-Paz A, Madore J, Elkahloun A, Wilmott JS, Gartner JJ, Di Pizio A, Winograd-Katz S, Sindiri S, Rotkopf R, Dutton-Regester K, Johansson P, Pritchard AL, Waddell N, Hill VK, Lin JC, Hevroni Y, Rosenberg SA, Khan J, Ben-Dor S, Niv MY, Ulitsky I, Mann GJ, Scolyer RA, Hayward NK, Samuels Y (2015) Recurrent inactivating RASA2 mutations in melanoma. Nat genet 47:1408. https://doi.org/10.1038/ng.3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siempelkamp BD, Rathinaswamy MK, Jenkins ML, Burke JE (2017) Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas. J Biol Chem 292:12256–12266. https://doi.org/10.1074/jbc.M117.789263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D, Calderone A, Castagnoli L, Cesareni G (2020) SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Res 48:D504–D510. https://doi.org/10.1093/nar/gkz949

    Article  CAS  PubMed  Google Scholar 

  47. Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4:942–947. https://doi.org/10.4161/psb.4.10.9530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2004) G-protein signaling: back to the future. Cell Mol Life Sci 62:551–577. https://doi.org/10.1007/s00018-004-4462-3

    Article  CAS  Google Scholar 

  49. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205. https://doi.org/10.1038/nature02866

    Article  CAS  PubMed  Google Scholar 

  51. Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cel Mol Biol 268:1–37. https://doi.org/10.1016/s1937-6448(08)00801-0

    Article  CAS  Google Scholar 

  52. Lu H, Zhu YF, Xiong J, Wang R, Jia Z (2015) Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Microbiol Res 177:28–33. https://doi.org/10.1016/j.micres.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  53. Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104. https://doi.org/10.1093/jmcb/mjv014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363. https://doi.org/10.1038/msb.2010.24

    Article  PubMed  PubMed Central  Google Scholar 

  55. McCarroll J, Kavallaris M (2012) Nanoparticle delivery of siRNA as a novel therapeutic for human disease. Nucleus 7:m7G. https://doi.org/10.2147/IJN.S23696

    Article  Google Scholar 

  56. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  57. Tian XJ, Zhang H, Zhang J, Xing J (2020) Ultrasensitivity and Bistability arising from miRNA-mRNA Reciprocal Interaction. Q-Bio Conference and Summer School, University of Maryland, College Park

    Google Scholar 

  58. Skeen JE, Bhaskar PT, Chen CC, Chen WS, Peng XD, Nogueira V, Hahn-Windgassen A, Kiyokawa H, Hay N (2006) Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10:269–280. https://doi.org/10.1016/j.ccr.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  59. Bhaskar PT, Hay N (2007) The two TORCs and AKT. Dev Cell J 12:487–502. https://doi.org/10.1016/j.devcel.2007.03.020

    Article  CAS  Google Scholar 

  60. Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y, Dewhirst MW, Fields TA, Casey PJ (2006) The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci USA 103:8173–8178. https://doi.org/10.1073/pnas.0510254103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quigley EMM, Turnberg LA (1987) pH of the microclimate lining human gastric and duodenal mucosa in vivo: studies in control subjects and in duodenal ulcer patients. Gastroenterology 92:1876–1884. https://doi.org/10.1016/0016-5085(87)90619-6

    Article  CAS  PubMed  Google Scholar 

  62. Aryani A, Denecke B (2015) In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Res Notes 8:164. https://doi.org/10.1186/s13104-015-1114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bala S, Csak T, Momen-Heravi F, Lippai D, Kodys K, Catalano D, Satishchandran A, Ambros V, Szabo G (2015) Biodistribution and function of extracellular miRNA-155 in mice. Sci Rep 5:107–121. https://doi.org/10.1038/srep10721

    Article  Google Scholar 

  64. Howard KM, Kusuma RJ, Baier SR, Friemel T, Markham L, Vanamala J, Zempleni J (2015) Loss of miRNAs during Processing and Storage of Cow’s (Bos Taurus) Milk. J Agric Food Chem 63:588–592. https://doi.org/10.1021/jf505526w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634. https://doi.org/10.1016/j.cell.2004.12.038

    Article  CAS  PubMed  Google Scholar 

  66. Hannafon BN, Ding WQ (2013) Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 14:14240–14269. https://doi.org/10.3390/ijms140714240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baumann V, Winkler J (2014) MiRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 6:1967–1984. https://doi.org/10.4155/fmc.14.116

    Article  CAS  PubMed  Google Scholar 

  68. Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ (2006) A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem 281:26483–26490. https://doi.org/10.1074/jbc.m604376200

    Article  CAS  PubMed  Google Scholar 

  69. Gan CP, Zain RB, Abraham MT, Patel V, Gutkind JS, Cheong SC, Chong CE, Hamid S, Teo SH (2011) P126. Expression of GNA12 and its role in oral cancer. Oral Oncol 47:S114–S115. https://doi.org/10.1016/j.oraloncology.2011.06.369

    Article  Google Scholar 

  70. Juneja J, Casey PJ (2009) Role of G12 proteins in oncogenesis and metastasis. Br J Pharmacol 158:32–40. https://doi.org/10.1111/j.1476-5381.2009.00180.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Laplante M, Sabatini DM (2016) Regulation of mTORC1 and its impact on gene expression at aglance. J Cell Sci 126:1713–1719. https://doi.org/10.1242/jcs.125773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AG, VN, AC; Data curation: AG; Formal analysis: VN, VM, CC, GDM; Funding acquisition: AG, AC; Supervision: AG; Writing—original draft: AG; Writing—review & editing: all authors.

Corresponding authors

Correspondence to Angelo Gismondi or Antonella Canini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest about the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gismondi, A., Nanni, V., Monteleone, V. et al. Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep 48, 435–449 (2021). https://doi.org/10.1007/s11033-020-06070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06070-6

Keywords

Navigation