Skip to main content
Log in

Assessment of genetic diversity of thirty Tunisian fig (Ficus carica L.) accessions using pomological traits and SSR markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sixteen pomological traits were employed to characterize the diversity of 30 fig accessions collected mainly from Southeastern Tunisia and maintained at CFPA ‘El Gordhab’, Tataouine, in Southeastern Tunisia. Additionally, 13 simple sequence repeat (SSR) loci were analyzed to detect the genetic diversity of the 30 fig accessions. In this study, qualitative data (fruit shape, fruit external color, fruit internal color, abscission of the stalk from the twig, skin peeling, fruit skin firmness) showed morphological variation within accessions. A highly significant difference (p < .01) among accessions was revealed for all the quantitative traits. The first three components (PC1, PC2, and PC3) of PCA accounted for 52.99% of the total variability. PC1, PC2, and PC3 accounted respectively for 28.02, 13.05, and 11.91% of the total variance. The most discriminating morphological parameters were fruit length and diameter, stalk length and diameter, neck length and diameter, stalk and flesh thickness, fruit shape, skin peeling, and skin firmness. Concerning the molecular results, 40 alleles were revealed. The number of alleles ranged between 2 to 6 with a mean of 3.08 alleles per locus. The observed heterozygosity (Ho) ranged from 0.03 (LMFC21, LMFC23, and LMFC32) to 0.83 (LMFC30) with an average of 0.43. The expected heterozygosity (He) varied from 0.03 (LMFC21, LMFC 23 and LMFC32) to 0.74 (LMFC30) with an average of 0.37. UPMGA cluster analysis and PCA grouped the accessions in 6 groups. Our results showed that the SSR markers used detected low genetic diversity within the accessions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duenas M, Perez-Alonso JJ, Santos-Buelga C, Escribano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.). J Food Comp Anal 21:107–115

    Article  CAS  Google Scholar 

  2. Almajali D, Abdel-Ghani AH, Migdadi H (2012) Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers. Sci Hortic 147:8–19

    Article  CAS  Google Scholar 

  3. Ercisli S, Tosun M, Karlidag H, Dzubur A, Hadziabulic S, Aliman Y (2012) Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey. Plant food hum. Nutr 67:271–276

    CAS  Google Scholar 

  4. Aljane F, Neily MH, Msaddek (2020) Phytochemical characteristic and antioxidant activity of several fig (Ficus carica L.) ecotypes. Ital J Food Sci 32:736–749

    Google Scholar 

  5. Pereira C, Martín A, López-Corrales M, de Guía CM, Galván AI, Serradilla MJ (2020) Evaluation of the physicochemical and sensory characteristics of different fig cultivars for the fresh fruit market. Foods. https://doi.org/10.3390/foods9050619

  6. Rubnov S, Kashman Y, Rabinowitz R, Schlesinger M, Mechoulam R (2001) Suppressors of cancer cell proliferation from fig (Ficus carica) resin: isolation and structure elucidation. J Nat Prod 64:993–996

    Article  CAS  PubMed  Google Scholar 

  7. Lansky EP, Paavilainen HM, Pawlus AD, Newman RA (2008) Ficus spp (fig): ethnobotany and potential as anticancer and anti-inflammatory agents. J Ethnopharmacol 119:195–213

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Wang X, Jiang S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J, Yang H (2008) Cytotoxicity of fig fruit latex against human cancer cells. Food Chem Toxicolo 46:1025–1033

    Article  CAS  Google Scholar 

  9. Oliveira AP, Valentão P, Pereira JA, Silva BM, Taveres F, Andrade PB (2010) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47:2841–2846

    Article  Google Scholar 

  10. Raskovic B, Lazic J, Polovic N (2015) Characterization of general proteolytic, milk clotting and antifungal activity of Ficus carica latex during fruit repening. J Sci Food Agric 96:576–582

    Article  PubMed  Google Scholar 

  11. Melekşen A, Danijela P, Peral ES, Tim W, Gürsel Ö, Sezai E (2020) Molecular characterization of fig (Ficus carica L.) germplasm from northeastern Black Sea region. Genetika 52:411–420

    Article  Google Scholar 

  12. Caliskan O, Polat AA (2008) Fruit characteristics of fig cultivars and genotypes grown in Turkey. Sci Hortic 115:360–367

    Article  Google Scholar 

  13. Şimşek M, Yildirim H (2010) Fruit characteristics of the selected fig genotypes. Afr J Biotechnol 9:6056–6060

    Google Scholar 

  14. Gozlekci S (2011) Pomological traits of fig (Ficus carica L.) genotypes collected in the West Mediterranean region in Turkey. J Anim Plant Sci 21:646–652

    Google Scholar 

  15. Caliskan O, Polat AA, Celikkol P, Bakir M (2012) Molecular characterization of autochthonous Turkish fig accessions. Span J Agric Res 10:130–140

    Article  Google Scholar 

  16. Caliskan O, Bayazit S, Ilgin M, Karatas N (2017) Morphological diversity of caprifig (Ficus carica var. caprificus) accessions in the eastern Mediterranean region of Turkey: potential utility for caprification. Sci Hortic 222:46–56

    Article  Google Scholar 

  17. Ciarmiello LF, Piccirillo P, Carillo P, De Luca A, Woodrow P (2015) Determination of the genetic relatedness of fig (Ficus carica L.) accessions using RAPD fingerprint and their agro-morphological characterization. S Afr J Bot 97:40–47

    Article  CAS  Google Scholar 

  18. Papadopoulou K, Ehaliotis C, Tourna M, Kastanis P, Karydis I, Zerkavis G (2002) Genetic relatedness among dioecious Ficus carica L. cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetics 114:183–194

    CAS  Google Scholar 

  19. Oukabli A, Mamouni A, Laghezali R, Khadari B, Roger JP, Kjellberg F, Ater M (2002) Genetic variability in Morrocan fig cultivars (Ficus carica) based on morphological and pomological data. Acta Hortic 605:54–60

    Google Scholar 

  20. Messaoudi Z, Haddadi L (2005) Morphological and chemical characterization of fourteen fig trees cultivated in Oulmes area, Morocco. Acta Hortic 798:83–86

    Google Scholar 

  21. Hssaini L, Hanine H, Razouk R, Ennahli S, Mekaoui A, Ejjilani A, Charafi J (2019) Assessment of genetic diversity in Moroccan fig (Ficus carica L.) collection by combining morphological and physicochemical descriptors. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-019-00838-x

  22. Benettayeb ZE, Bencheikh M, Setti B, Chaillou S (2017) Genetic diversity of Algerian fig (Ficus Carica L.) cultivars based on morphological and quality traits. Hortic Soc India 74:311–316

    Article  Google Scholar 

  23. Mahmoudi S, Khali M, Benkhaled B, Boucetta I, Dahmani Y, Attallah Z, Belbaraouet S (2018) Fresh figs (Ficus carica L. ): pomological characteristics, nutritional value, and phytochemical proprieties. Eur J Hortic Sci 83:104–113

    Article  Google Scholar 

  24. Sanches J, Melgarejo P, Hemandz F, Martienz JJ (2002) Chemical and morphological characterization of four fig tree cultivars (Ficus carica L.) grown under similar culture conditions. Acta Hortic 605:33–36

    Google Scholar 

  25. Giraldo E, Lόpez-Corrales M, Hormaza JI (2010) Selection of the most discriminating morphological qualitative variables for characterization of fig germplasm. J Am Soc Hortic Sci 135:240–249

    Article  Google Scholar 

  26. Mars M, Marrakchi M, Chebli T (1998) Multivariate analysis of fig (Ficus carica. L.) germplasm in southern Tunisia. Acta Hortic 480:75–81

    Article  Google Scholar 

  27. Hedfi J, Trifi M, Hannachi-Salhi A, Ould Mohamed Salem A, Rhouma A, Marrakchi M (2003) Morphological and isoenzymatic polymorphism in Tunisian fig (Ficus carica L.) collection. Acta Hortic 605:319–325

    Article  Google Scholar 

  28. Chatti K, Hannachi-Salhi A, Mars M, Marrakchi M, Trifi M (2004) Analyse de la diversité génétique de cultivars tunisiens de figuier (Ficus carica L.) à l’aide de caractères morphologiques. Fruits 59:49–61

    Article  Google Scholar 

  29. Saddoud O, Baraket G, Chatti K, Trifi M, Marrakchi M, Salhi-Hannachi A, Mars M (2008) Morphological variability of fig (Ficus carica L.) cultivars. Int J Fruit Sci 8:35–51

    Article  Google Scholar 

  30. Saddoud O, Barakat G, Chatti K, Trif M, Marrakchi M, Mars M, Salhi-Hannachi A (2011) Using morphological characters and simple sequence repeat (SSR) markers to characterize Tunisian fig (Ficus carica L.) cultivars. Acta Biol Crac Ser Bot 53:7–14

    Google Scholar 

  31. Aljane F, Ferchichi A (2009) Assessment of genetic diversity among some southern Tunisian fig (Ficus carica L.) cultivars based on morphological descriptors. Jordan J Agric Sci 5:1–16

    Google Scholar 

  32. Aljane F, Ferchichi A (2010) Assessment of genetic diversity of Tunisian fig (Ficus carica L.) cultivars using morphological and chemical characters. Acta Bot Gallalica 157:171–182

    Article  CAS  Google Scholar 

  33. Ben Abdelkrim A, Baraket G, Essalouh L, Achtak H, Khadari B, Salhi-Hannachi A (2015) Use of morphological traits and microsatellite markers to characterize the Tunisian cultivated and wild figs (Ficus carica L.). Biochem Syst Ecol 59:209–219

    Article  Google Scholar 

  34. Essid A, Aljane F, Ferchichi A (2017) Morphological characterization and pollen evaluation ofsome Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. S Afr J Bot 111:134–143

    Article  Google Scholar 

  35. Giraldo E, Lopez-Corrales M, Hormaza JI (2008) Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. JAm Soc Hortic Sci 133:69–77

    CAS  Google Scholar 

  36. Khadari B, Oukabli A, Ater M et al (2004) Molecular characterization of Moroccan fig germplasm using inter simple sequence repeat and simple sequence repeat markers to establish a reference collection. Hortic Sci 40:29–32

    Google Scholar 

  37. Salhi-Hannachi A, Trifi M, Zehdi S, Hadfi J, Mars M, Rhouma A, Marrakchi M (2004) Inter simple sequence repeat fingerprints to assess genetic diversity in Tunisian fig (Ficus carica L.). Genet Resour Crop Evol 51:269–275

    Article  CAS  Google Scholar 

  38. Salhi-Hannachi A, Chatti K, Mars M, Marrakchi M, Trifi M (2005) Comparative analysis of genetic diversity in two Tunisian collections of fig cultivars based on random amplified polymorphic DNA and inter simple sequence repeats fingerprints. Genet Resour Crop Evol 52:563–573

    Article  Google Scholar 

  39. Aljane F (2016) Analysis of genetic diversity in Tunisian fig (Ficus carica L.) germplasm bank revealed by RAPD markers and morphological characters. Eur J Sci Res 142:172–192

    Google Scholar 

  40. Baraket G, Chatti K, Saddoud O, Ben Abdelkarim A, Mars M, Trifi M, Salhi-Hannachi A (2011) Comparative assessement of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29:171–184

    Article  Google Scholar 

  41. Saddoud O, Salhi-hannachi A, Chatti K, Mars M, Rhouma A, Marrakchi M, Trifi M (2005) Tunisian fig (Ficus carica L.) genetic diversity and cultivar characterization using microsatellite markers. Fruits 60:143–153

    Article  CAS  Google Scholar 

  42. Saddoud O, Chatti K, Salhi-Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144:149–157

    Article  CAS  PubMed  Google Scholar 

  43. Essid A, Aljane F, Ferchichi A, Hormaza JI (2015) Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hereditas 152:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aradhya MK, Ed S, Velasco D, Koehmstedt A (2010) Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica 138:681–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mars M (2003) Fig (Ficus carica.L.) genetic resources and breeding. Acta Hortic 605:19–26

    Article  Google Scholar 

  46. Mars M, Chatti K, Saddoud O, Salhi-Hannachi A, Trifi M, Marrakchi M (2008) Fig cultivation and genetic resources in Tunisia. Anoverview. Acta Hortic 798:27–32

    Article  Google Scholar 

  47. IPGRI and CIHEAM (2003) Descriptors for fig (Ficus carica L.). International Plant Genetic Resources Institute (IPGRI), Rome, Italy; International Center for Advanced Mediterranean Agronomic Studies (CIHEAM), Paris

  48. Giraldo E, Viruel MA, López-Corrales M, Hormaza JI (2005) Characterization and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol 80:217–224

    Article  CAS  Google Scholar 

  49. Khadari B, Hochu I, Santoni S, Kjellberg F (2001) Identification and characterisation of microsatellite loci in the commun fig (Ficus carica L.) and representative species of genus Ficus. Mol Ecol Notes 1:191–193

    Article  CAS  Google Scholar 

  50. Core Team R (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  51. Yeh FC, Young RC, Timothy B, Boyle TBJ, Ye ZH, Mao JX (1997) Popgene, the userfriendly shareware for population genetic analysis. Canada: Molecular Biology and Biotechnology Center, University of Alberta

  52. Wagner H, Sefc K (1999) Identity 1.0 Centre for Applied Genetics, Univ. Agric. Sci., Vienna http://www.uni-graz.at/~sefck/manual.pdf. Last accessed May 2015

  53. Van de Peer Y, De Watchter R (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  54. XLSTAT (2005) AddinsoftXLSTATPro 7.5.3 available at http://www.xlstat.com/en/homee

  55. Condit IJ (1941) Fig characteristics useful in the identification of varieties. Hilgard 14:1–69

    Article  Google Scholar 

  56. Podgornik M, Vul I, Vrhovnik I, Mavsar DB (2010) A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Sci Horti 125:380–389

    Article  Google Scholar 

  57. Aljane F, Nahdi S, Essid A (2012) Genetic diversity of some accessions of Tunisian fig tree (Ficus carica L.) based in morphological and chemical traits. J Nat Prod Plant Res 2:350–359

    Google Scholar 

  58. Can HZ (1993) The investigation of some horticultural characteristics of some selected fig genotypes in Aegean Region. Master’s thesis, Ege University, Turkey, Izmir

  59. Abdelsalam NR, Awad RM, Ali HM, Salem MZM, Abdellatif KF, Elshikh MS (2019) Morphological, pomological, and specific molecular marker resources for genetic diversity analyses in fig (Ficus carica L.). Hortsci 54:1299–1309

    Article  CAS  Google Scholar 

  60. Botti C, Franck N, Prat L, Ioannidis D, Morales B (2003) The effect of climatic conditions on fresh fig fruit yield, quality and type of crop. Acta Hortic 605:37–43

    Article  Google Scholar 

  61. Aksoy U, Seferoglu A, Misirli S (1992) Selection of table fig cultivars suitable for Aegean region conditions. Proceeding international Turkish horticulture congress, Ismir, Turkey. 545–548

  62. Koyuncu MA, Bostan SZ, Islam A, Koyuncu F (1998) Investigation onphysical and chemical characteristics in fig cultivars grown in Ordu. Acta Hortic 480:87–89

    Article  Google Scholar 

  63. Gaaliche B, Saddoud O, Mars M (2012) Morphological and pomological diversity of fig (Ficus carica L.) cultivars in northwest of Tunisia. ISRN Agronomy https://doi.org/10.5402/2012/326461

  64. Boudchicha RH, Hormaza JI, Benbouza B (2018) Diversity analysis and genetic relationships among local Algerian fig cultivars (Ficus carica L.) using SSR markers. S Afr J Bo 116:207–215

    Article  CAS  Google Scholar 

  65. Yılmaz Y, İkten H (2020) Determination of genetic diversity among the fig (Ficus carica L.) genotypes using AFLP and SSR markers. Acta Hortic 1289:281–290

    Article  Google Scholar 

  66. Ikegami H, Nogata H, Hirashima K, Awamura M, Nakahara T (2009) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Res Crop Evol 56:201–209

    Article  CAS  Google Scholar 

  67. Chatti K, Baraket G, Ben Abdelkarim A, Saddoud O, Mars M, Trifi M, Salhi-Hannachi A (2010) Development of molecular markers tolls for characterization and genetic analysis in Tunisian fig(Ficus carica L.) cultivars. Biochem Genet 48:789–806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the TunisianMinistry of Higher Education and Scientific Research, the Spanish Ministry of Economy and Innovation (Project Grant PID2019-109566RB-I00) and the Ministry of Agriculture (grant LR21IRA03). We gratefully acknowledge the farmers in ‘El Gordhab’, Tatouine and the Institute of Arid Region, Médenine Tunisia for their cooperation, Y. Verdún with help with technical molecular analyses and M. L Alcaraz with help for software molecular analysis.

Funding

This study was funded by the Tunisian Ministry of Higher Education Scientific Research, the Spanish Ministry of Economy and Innovation (Project Grant PID2019-109566RB-I00) and Scientific Research and the Ministry of Agriculture (grant LR21IRA03).

Author information

Authors and Affiliations

Authors

Contributions

Awatef Essid et Fateh Aljane equally contributed to this investigation. Awatef Essid carried out SSRs molecular analysis. Fateh Aljane carried out the pomological analysis. Mohamed Hichem Neily actively participated in statistical analysis and interpretation. Jose Ignacio Hormaza and Ali Ferchichi were responsible for conception on the experiments. All authors contributed to the drafting, reviewing of the manuscript and gave their final approval to the submitted version.

Corresponding author

Correspondence to Awatef Essid.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essid, A., Aljane, F., Neily, M.H. et al. Assessment of genetic diversity of thirty Tunisian fig (Ficus carica L.) accessions using pomological traits and SSR markers. Mol Biol Rep 48, 335–346 (2021). https://doi.org/10.1007/s11033-020-06051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06051-9

Keywords

Navigation